机械原理知识点汇总.docx

上传人:b****8 文档编号:9555172 上传时间:2023-02-05 格式:DOCX 页数:29 大小:82.56KB
下载 相关 举报
机械原理知识点汇总.docx_第1页
第1页 / 共29页
机械原理知识点汇总.docx_第2页
第2页 / 共29页
机械原理知识点汇总.docx_第3页
第3页 / 共29页
机械原理知识点汇总.docx_第4页
第4页 / 共29页
机械原理知识点汇总.docx_第5页
第5页 / 共29页
点击查看更多>>
下载资源
资源描述

机械原理知识点汇总.docx

《机械原理知识点汇总.docx》由会员分享,可在线阅读,更多相关《机械原理知识点汇总.docx(29页珍藏版)》请在冰豆网上搜索。

机械原理知识点汇总.docx

机械原理知识点汇总

绪论

1.机械原理是一门以机器与机构为研究对象的学科。

机械又是机器与机构的总称。

2.一般机器具有三个特征,现代机器可以定义为:

机器是执行机械运动的装置,用

来转换或传递能量、物料与信息。

3.凡用来完成有用机械功的机器称为工作机,凡将其他形式的能量转换为机械能的

机器称为原动机。

工程中大多是工作机和原动机互相配合应用,有时再加上独立的传动

装置,则称为机组。

4.从功能的角度讲,机器一般主要由动力系统、执行系统、传动系统、操纵和控制

系统四部分组成。

5.机构是能实现预期的机械运动的各构件(包括机架)的基本组合体。

6.机器是由各种机构组成的,它可以完成能量的转换或做有用的机械功;而机构则仅仅

起着运动及动力传递和运动形式转换的作用。

从结构和运动的观点来看,两者之间并无区别。

7.机械原理课程的主要研究内容有机构的组成原理与结构分析、机构运动分析和力

分析、常用机构及其设计、机械系统运动方案设计及机械系统动力学设计等五个方面。

8.机械原理是机械类各专业的一门主干技术基础课程。

它的任务是使学生掌握机构

学和机器动力学的基本理论、基本知识和基本技能,学会常用机构的分析和综合方法,

并具有进行机械系统设计的初步能力。

在培养高级机械工程技术人才的全局中,为学生

从事机械方面的设计、制造、研究和开发奠定重要的基础,并具有增强学生适应机械技

术工作能力的作用。

第1章机构组成原理及机构结构分析

1.凡两构件直接接触而又能产生一定形式的相对运动的连接称为运动副,常用的平

面运动副有回转副、移动副和高副。

如果两构件脱离接触,运动副就随着消失。

2.由两个或两个以上的构件用运动副连接构成的构件系统称为运动链。

各构件用运

动副首尾连接构成封闭环路的运动链称为闭式链,否则就称为开式链。

3.为便于机构的设计与分析,常撇开构件、运动副的外形和具体构造,而用规定的

线条和符号代表构件和运动副,并按比例定出各运动副位置,表示机构的组成和传动情

况,这样绘制出能够准确表达机构运动特性的简明图形就称为机构运动简图。

如果不严

格按比例来绘制简图,这样的简图称为机构示意图。

4.由3个及3个以上的构件同在一处以转动副相连接,就构成了复合铰链。

当有m个

构件(包括固定构件)以复合铰链相连接时,其转动副的数目应为(m-1)个。

5.平面机构自由度的计算公式为

,用公式计算机构的自由度时,要注意复合铰链处的运动副数及去掉局部自由度和虚约束。

6.对整个机构运动无关的自由度称为局部自由度。

7.对机构的运动不起独立限制作用而只起到重复限制作用的约束,则称为虚约束。

在自由度计算中应将其去掉不计。

常见的虚约束发生在:

两构件组成多个转动副且其轴

线相重合时;两构件组成多个移动副且其移动导路方向平行时;两构件上连接点的轨迹

在连接前已是相重时;机构存在对运动不起作用的对称部分。

8.机构具有确定运动的条件是:

机构的原动件的数目应等于机构的自由度的数目。

9.在平面高副机构中,高副可用“一个构件两个低副”代替而成全含低副的机构。

高副低代的关键是找出构成高副的两轮廓曲线在接触点处的曲率中心。

10.自由度为零并且不能再拆分的平面低副构件组称为基本杆组或阿苏尔杆组。

基本

杆组应满足

的条件。

11.任何机构都可以看作是由若干个基本杆组依次连接于原动件和机架上所组成的系

统,这就是机构的组成原理。

12.机构结构分析就是将已知机构分解为原动件、机架和若干个基本杆组,进而了解

机构的组成,并确定机构的级别。

进行结构分析时,应从远离原动件的构件开始拆分,

每次都先试拆Ⅱ级组,没有Ⅱ级组时才拆Ⅲ级组,同时每拆下一个基本杆组后剩下的部

分仍为机构且自由度数与原机构相同,直至全部拆分成杆组且最后只剩下原动件和机架。

13.根据对机构的结构、运动学和动力学要求进行机构设计的过程通常称为机构综

合。

机构结构综合就是对机构结构形式的研究和设计的过程。

第2章平面机构的运动分析

平面机构的运动分析要解决的问题是根据机构的运动学尺寸、机构位置和原动件的运

动规律,确定机构中其余构件上任一点的轨迹、位移、速度和加速度以及这些构件的角

位移、角速度和角加速度。

分析的方法如下。

1.图解法

当用图解法进行机构的运动分析时,首先要选用适当的比例尺绘制出机构位置图。

1)速度瞬心法

速度瞬心法是利用速度瞬心进行机构的速度分析。

当求构件的角速度或其上一点的速

度时,首先要找出机构中相应的相对速度瞬心和绝对速度瞬心,再由速度瞬心的概念,

根据待求构件的运动情况,即可求出构件的角速度或速度。

瞬心法适用于简单平面机构的速度分析,不能求解加速度。

2)相对运动图解法

相对运动图解法用于分析机构的速度和加速度。

首先写出机构上某些点的速度(或加

速度)矢量方程式,然后作速度(或加速度)多边形,求出构件上某一点的速度(或加速度)

最后再求该构件的角速度(或加速度)。

(1)同一构件上两点间的速度(或加速度)关系是:

构件上任一点C的速度(或加速度

等于基点B的速度(或加速度)与C点对基点B的相对速度(或加速度)的矢量和,故其速

度关系为

,加速度关系为

(2)在组成移动副的两构件中,一个构件上任一点B的绝对速度等于另一构件上重合

点B2的绝对速度(牵连速度)与B3相对于B2的相对速度的矢量和,故其速度关系为

;一个构件上任一点B3的绝对加速度等于另一构件上重合点B2的绝对加速度(牵连加速度)与B相对于B的相对加速度的矢量和,故其加速度关系为

哥氏加速度的大小等于两倍牵连角速度与瞬时重合点的相对速度的乘积,其方向为相对速度的方向沿牵连角速度的转向转过90°,当牵连运动为平动时,哥氏加速度为零。

相对运动图解法适用于求解机构某个位置的运动参数。

3)运动线图

运动线图可以表示机构在一个运动循环过程中各个运动参数的变化规律。

2.解析法

用于分析机构的位置参数(位移或角位移)、速度参数(速度或角速度)以及加速度参数

(加速度或角加速度)。

当用解析法进行机构的运动分析时,首先要建立直角坐标系,然后列出矢量方程式,

解方程即可求得机构的瞬时位置,得出位置参数。

相应地对时间t求导,即可得到速度

方程,再对时间t求导即可得到加速度方程,求解后得出速度参数和加速度参数。

第3章平面连杆机构及其设计

1.铰链四杆机构的基本形式

铰链四杆机构是由转动副连接而成的四杆机构,是由机架、连架杆和连杆组成。

铰链

四杆机构是平面连杆机构的基本形式,根据两个连架杆运动形式的不同,铰链四杆机构

分为曲柄摇杆机构、双曲柄机构和双摇杆机构。

通过扩大转动副、转动副转化成移动副

以及取不同的构件为机架,又可演化出多种不同类型的机构。

2.铰链四杆机构有曲柄的条件

1)各个构件的相对尺寸满足杆长和条件;

2)以最短杆或与其相邻的构件为机架。

3.急回运动是机构运动的一个重要特性

在铰链四杆机构中,曲柄与连杆两次共线位置所夹的锐角称为极位夹角θ。

当θ>0°

时机构具有急回运动。

机构从动件空回行程与工作行程的平均速度之比称为行程速度变

化因数K。

K与θ的关系为

4.压力角和传动角是机构的传力特性参数

不计摩擦力、惯性力和重力时,从动件上某点所受作用力的方向与其速度方向所夹的

锐角称为压力角α,压力角α的余角称为传动角γ。

在机构的运动过程中,压力角和传

动角γ是随着机构的位置的改变而变化的。

压力角α越小,传动角γ越大,机构的传力

性能就越好。

5.死点位置

在四杆机构中,当连杆与从动连架杆共线时,机构的传动角γ=0°。

如果机构在这

个位置上起动,则无论驱动力有多大,都不能使机构运动,该位置称为机构的死点

位置。

6.平面连杆机构的设计

平面连杆机构的设计分为两类基本问题,一类是按照给定的运动规律设计,另一类是

按照给定的运动轨迹设计。

设计方法分为解析法、图解法和实验法。

第5章齿轮机构及其设计

本章以渐开线直齿圆柱齿轮外啮合传动的基本理论和设计计算展开讨论,并对其他类型的齿轮传动进行了分析,内容可归纳如下:

1.齿轮按照分类方式的不同分为内齿轮和外齿轮,直齿轮和斜齿轮。

传动分为内啮合和外啮合,内啮合齿轮结构紧凑,斜齿轮传动平稳、噪声低,但传动有轴向力。

2.齿廓啮合接触点处公法线与两齿轮连心线的交点称为啮合节点。

节点在分别与两

齿轮固联的平面上的运动轨迹称为两齿轮的节线。

对于定传动比齿轮传动,节点固定,

节线为圆形,称其为节圆。

3.当直线沿着半径为rb的基圆作纯滚动时,其上K点的轨迹称该圆的渐开线。

渐开

线齿廓可以保证传动比恒定,即渐开线齿廓满足齿廊啮合基本定律。

4.渐开线齿轮的基本参数包括齿数z,模数m,压力角a,齿顶高系数ha*,顶隙系

数c*。

为考虑设计、制造、互换的要求,模数m定义为m=p/π,式中p为分度圆齿距

渐开线齿轮的模数m、压力角α,齿顶高系数ha*,顶隙系数c*均已标准化,将以上参数标淮化且分度圆上齿厚与齿槽宽相等的齿轮称为标准齿轮。

5.分度圆是模数和压力角均已标准化的圆,它只与齿轮模数和齿数有关,因此加工

后的齿轮的分度圆为一定值。

两个啮合齿轮相当于两个直径等于节圆的摩擦圆在作纯滚

动,因此两节圆总是相切的,单个齿轮没有节圆。

标准齿轮的分度圆与节圆重合。

6.啮合角是两节圆公切线与啮合线的夹角,啮合角即节圆压力角。

7.标准直齿圆柱齿轮正确啮合的条件是:

两齿轮的模数和压力角分别相等。

这个条

件对直齿圆柱齿轮,无论是标准齿轮还是变位齿轮,外啮合还是内啮合齿轮均适用,对

齿轮齿条啮合也同样适用。

8.齿条几何尺寸的特点是:

对应齿轮的分度圆、齿顶圆、齿根圆,分别变为分度线

齿顶线及齿根线;其齿廓变为直线,压力角等于齿形角;同侧齿廓平行,齿距处处相等。

9.内齿轮几何尺寸的特点是:

对应于外齿轮的齿槽变为内齿轮的轮齿,其齿廓是内

凹的,其齿根圆大于齿顶圆,而齿顶圆又必须大于基圆。

10.重合度是指实际啮合线长度与基圆齿距之比,即同时参与啮合的平均齿对数。

保证传动的连续性,重合度必须大于1。

11.轮齿加工方法分为仿型法和范成法,范成法加工精度高于仿型法,但需要专用机

床。

用范成法加工齿轮时,当刀具齿顶线超过轮齿啮合极限点时,切出的齿轮将发生根

切,直齿圆柱齿轮不发生根切的最少齿数为zmin=17。

12.分度圆上齿槽宽和齿厚不相等的齿轮为变位齿轮。

变位齿轮的分度圆和基圆与同

样参数的标准齿轮相同,变位系数不同时,齿廓曲线是同一渐开线上的不同段。

为避免

根切采用变位修正法切制齿轮。

13.平行轴斜齿圆柱齿轮的正确啮合条件是:

两齿轮法面上的模数和压力角分别相等

螺旋角大小相等,方向相反(外啮合)或相同(内啮合)。

斜齿轮的重合度包括端面重合度和

轴向重合度,重合度大于直齿圆柱齿轮,因此传动平稳,承载能力大。

14.斜齿轮的法面齿形与切齿的标准刀具齿廓形状相当,所以法面参数为标准值。

斜齿轮法面齿形相当的假想直齿圆柱齿轮称为该斜齿轮的当量齿轮,斜齿轮的当量齿轮

齿数为zv=Z/cosβ。

15.一对交错轴斜齿圆柱齿轮的正确啮合条件是:

两齿轮法面上的模数和压力角分别

相等,且两齿轮的螺旋角之和等于轴夹角。

16.蜗轮蜗杆传动正确啮合条件是:

在其中间平面内蜗轮与蜗杆的模数和压力角分别

相等,蜗杆导程角还应等于蜗轮螺旋角,且两者螺旋线方向相同。

17.一对圆锥齿轮的正确啮合条件也是两齿轮的模数和压力角(大端)分别相等,当量

齿轮齿数为zV=z/cosδ。

第6章轮系及其设计

轮系是由一系列齿轮所组成的传动装置,它通常介于原动机和执行机构之间,把原动

机的运动和动力传给执行机构。

1.轮系分为定轴轮系、周转轮系和复合轮系

(1)定轴轮系:

各个齿轮的轴线相对于机架的位置都是固定的轮系。

定轴轮系又可分

为平面定轴轮系和空间定轴轮系。

(2)周转轮系:

各齿轮中有一个或几个齿轮轴线的位置是绕着其他齿轮的固定轴线回

转的轮系。

周转轮系由太阳轮、行星轮、系杆及机架组成,一般都是以太阳轮和系杆作

为输入和输出构件,故又称它们为基本构件。

周转轮系按照自由度的不同又可分为自由度为1的行星轮系和自由度为2的差动轮系

(3)复合轮系:

既包含定轴轮系又包含有周转轮系或由几部分周转轮系组成的复杂

轮系。

2.轮系传动比的计算

(1)定轴轮系的传动比

定轴轮系的传动比等于组成该轮系的各对啮合齿轮传动比的连乘积,也等于各对啮合

齿轮中所有从动轮齿数的连乘积与所有主动轮齿数连乘积之比,即

如果首末两轮回转轴线平行,则传动比前得有正负号。

首末两轮回转方向相同,传动

比为正;首末两轮回转方向相反,传动比为负。

如果首末两轮回转轴线不平行,传动比

无所谓正负,但须在图中用箭头表示各轮的转向。

(2)周转轮系的传动比

周转轮系传动比采用转化轮系的方法来求解,设周转轮系中任意两个齿轮A和B,系

H

杆为H,则其转化轮系的传动比iHAB可表示为

其传动比计算的基本思路是:

反转变定轴,转速用相对,注意正负号,转向计算定,

计算公式有规定,三轴平行才可用。

(3)复合轮系传动比的计算

复合轮系传动比计算步骤是:

正确划分轮系,分别列出传动比计算方程式,联立求解

3.设计行星轮系应满足的条件

设计行星轮系时,各轮齿数及行星轮个数应满足以下四个条件(以图6.19所示的单排K-H负号机构为例):

(1)传动比条件;

(2)同心条件;(3)装配条件;(4)邻接条件。

第7章其他常用机构

1.要使同一平面内两轴实现等角速度传动,安装双万向联轴节必须满足的条件为:

中间转轴两端的叉面必须位于同一平面内;主、从动轴与中间轴的夹角相等。

2.差动螺旋机构的位移量为两个螺旋副位移量之差;复式螺旋机构的位移量为两个

螺旋副位移量之和。

3.在齿式棘轮机构中,棘轮每次的转角都是棘轮齿距角的倍数,所以它的转角是有

级改变的。

单棘爪的齿式棘轮机构中,棘轮每次回转的角度不能小于一个齿距角,要使

棘轮每次转角小于齿距角应采用多爪棘轮机构。

4.外啮合单圆销槽轮机构的运动特性系数,总是小于1而大于0,故槽轮的槽数z≥3

5.为避免不完全齿轮机构主动轮首齿进入啮合时发生齿顶干涉和使从动轮能停在正

确的对称位置上,必须将主动轮的首齿和末齿齿顶降低。

6.对每分钟间歇次数较多的场合,最好采用凸轮式间歇运动机构。

第8章平面机构的受力分析

1.作用于机构中的力分为驱动力、阻力、运动副反力、重力和惯性力。

对于整个机

构而言,运动副的反力是内力,但对于一个构件而言是外力。

2.机构力分析是根据作用在机构上的已知力,求解机构运动所需的驱动力(力矩)或

能够输出的力(力矩)。

二者统称为平衡力或平衡力矩。

3.质量代换。

按一定条件将构件的质量假想地用集中于若干选定点上的集中质量来

代换的方法称为质量代换法。

在对构件进行质量代换时,应当使代换后各代换质量所产

生的惯性力及惯性力偶矩与该构件实际产生的惯性力及惯性力偶矩相等。

为此,必须满

足下列三个条件:

①代换前后构件的质量不变;

②代换前后构件的质心位置不变;

③代换前后构件对质心的转动惯量不变。

4.平面机构的动态静力分析如下。

动态静力分析的步骤:

首先对接平面连杆机构进行运动分析,求出有关构件的速度

加速度和角加速度等,然后求出作用于各物件上的惯性力和惯性力偶矩,并将它与其他

外力一起加到机构的相应点上,再对机构进行拆杆组,从远离平衡力作用的的杆组(或构

件)开始,逐个对各个杆组进行动态静力分析,依次求出各个运动副的反力;最后求出有

平衡作用的构件的平衡力(力矩)及运动副反力。

第9章机器的机械效率

(1)机械的输出功(功率)与输入功(功率)的比值称为机械效率。

机械效率有两种表达形

式:

功或功率的形式;力或力矩的形式。

机械系统的总效率可以根据不同的联结组合方

式计算,一般有串联、并联和混联三种。

(2)从效率观点分析,机械发生自锁的条件:

机械的效率恒小于或等于零,即η≤0。

第10章机械的平衡

小结

1.机械平衡的目的是为了消除或减小机械运转时,构件所产生的惯性力和惯性力偶

而造成的危害。

2.对于B/D<0.2的回转件只需进行静平衡,且只在一个平衡平面内加配重,即可使

惯性力得到平衡。

对于B/D≥0.2的回转件需要进行动平衡,且需要在两个平衡基面内

加配重,才能使惯性力及惯性力偶得以平衡。

无论是静平衡或动平衡均是就其本身加

以平衡。

3.在设计构件的形状时,应进行平衡计算。

在构件制成后,要通过平衡试验,获得

平衡。

4.转子的许用不平衡量的表示方法有质径积法和偏心距法。

根据平衡等级,由平衡

精度表达式确定转子的许用不平衡量。

5.对于作往复移动或平面运动的构件不能在构件本身进行平衡,只能是机构在机座

上的平衡,使机构的惯性力的合力和力偶得到完全或部分地平衡。

第10章机械的平衡

1.机械平衡的目的是为了消除或减小机械运转时,构件所产生的惯性力和惯性力偶

而造成的危害。

2.对于B/D<0.2的回转件只需进行静平衡,且只在一个平衡平面内加配重,即可使

惯性力得到平衡。

对于B/D≥0.2的回转件需要进行动平衡,且需要在两个平衡基面内

加配重,才能使惯性力及惯性力偶得以平衡。

无论是静平衡或动平衡均是就其本身加

以平衡。

3.在设计构件的形状时,应进行平衡计算。

在构件制成后,要通过平衡试验,获得

平衡。

4.转子的许用不平衡量的表示方法有质径积法和偏心距法。

根据平衡等级,由平衡

精度表达式确定转子的许用不平衡量。

5.对于作往复移动或平面运动的构件不能在构件本身进行平衡,只能是机构在机座

上的平衡,使机构的惯性力的合力和力偶得到完全或部分地平衡。

第11章机械的运转及其速度波动的调节

1.机械从开始运动到停止运动的全过程,都要经历启动、稳定运转和停车三个阶段

1)启动阶段,

,其机械的速度从零开始不断增加到某一正常

工作速度,

2)稳定运转阶段,在这个阶段的每一个循环周期内,

,其机

械的速度在其平均值上下波动。

若匀速运转,无速度波动,任意时刻

3)停车阶段,

,其机械的速度从正常工作时的某一平均值降为零。

为了缩短停车时间和安全起见,可在机械上安装制动装置,加速消耗机械的动能

减少停车时间。

2.求已知力作用下的机械的真实的运动规律,可根据能量守恒定律列出的机械运动

时的动能方程式求解。

但求解机械系统动能守恒方程式时,必须首先求出每一个构件上

外力所做的功和所有运动构件的动能变化,所以十分不便。

为了简化计算,可以引入等

效力、等效力矩、等效质量和等效转动惯量等概念,把机械系统在已知力作用下的运动

问题的研究简化为只有等效构件和机架组成的简单机构在等效力(或等效力矩)作用下的

运动问题。

当等效构件在每一瞬间的运动求出后,机械系统上其余构件的运动即可求得

3.建立机械系统等效动力学模型时应遵循的原则是:

使机械系统在转化前后的动力

学效应不变,即瞬时功率等效;动能等效。

4.等效力(或等效力矩)是一个作用在等效构件上的假想力(或假想力矩),它在任一瞬

间所做的功率与机械系统中所有外力所做的功率之和相等(即瞬时功率等效)。

等效力(或

等效力矩)不仅与作用在机械系统上的所有外力和外力矩有关,而且与速度的比值有关

而和速度的大小无关。

5.等效质量(或等效转动惯量)是一个集中在等效构件上的假想质量(或假想转动惯

量),它在任一瞬间所具有的动能与机械系统中所有运动构件所具有的动能相等(即动能

等效)。

等效质量(或等效转动惯量)不但与机械系统中各活动构件的质量和转动惯量有关

而且与速度比的平方有关,而和速度的大小无关。

与等效构件的速度相比,活动构件的

速度越低,它所占的等效质量(或等效转动惯量)越小,故常可忽略不计。

6.当作用在机械系统中的驱动力(或驱动力矩)所做的功与阻抗力(或阻抗力矩)所做的

功不等时,将出现盈亏功,并引起机械系统速度的变化。

如果机械系统的运动速度做周

期性变化时,称为周期性速度波动,否则称为非周期性速度波动。

周期性速度波动可以

在机械系统中加入一个具有足够转动惯量的飞轮进行调节;而非周期性速度波动必须采

用调速器来改变输入功率,以使机械系统获得新的能量平衡。

7.安装飞轮后不可能使机械变为匀速,只能减小速度波动幅度。

为了减小飞轮转动

惯量,最好将其装在机械的高速轴上。

如果机械速度不均匀系数的许用值[δ]取值很小,

飞轮转动惯量就会很大,故不要过分追求运转速度的均匀性,否则将会使飞轮过于笨重

第12章机械运动方案设计

1.组合机构指是为满足各种复杂多样的运动要求,将多个基本机构按一定的方式组

合应用。

典型的组合方式有:

串联式组合,并联式组合,复合式组合,反馈式组合,装载式组

合(叠连式组合)。

串联式组合。

将若干个单自由度的基本机构顺序连接,并将前一个基本机构的输出构

件与后一个基本机构的输入构件固连在一起,使每一个前置机构的输出构件作为后继机

构的输入构件,这种组合方式称为机构的串联式组合。

并联式组合。

以一个n自由度基本机构作为基础机构,n个单自由度基本机构作为附

加机构。

n个附加机构共用同一个输入构件,而它们的输出构件同时接入基础机构,从

而形成一个自由度为1的机构系统,这种组合方式称为机构的并联式组合。

复合式组合。

是原动件的运动一方面直接传给一个两自由度基本机构(基础机构),另

一方面又通过一个单自由度基本机构(附加机构)传给该两自由度基本机构,而后者将这

两个输入运动合成为一个输出运动。

反馈式组合。

是以一个多自由度的基本机构作为基础机构,一个单自由度的基本机构

作为附加机构,原动件的运动先输入基础机构,该机构的一个输出运动经过附加机构的

输出,又反馈给基础机构。

装载式组合(叠连式组合)。

是将一个机构(包括其动力源)装载在另一个机构的活动构

件上的组合方式。

各基本机构没有共同的机架,而是互相叠连在一起。

前一个基本机构

的输出构件是后一个基本机构的相对机架。

可以是装载机构带动被装载机构运动,或装

载机构由被装载机构带动。

各基本机构各自进行运动,其运动的叠加即为所要求的输出

运动或工艺动作。

2.在组合机构中,自由度大于1的基本机构称为组合机构的基础机构,而自由度为

1的基本机构称为组合机构的附加机构。

3.目前机械设备中应用的动力源主要有电、液、气装置。

原动机有电动机、液压马

达、气动马达以及直线油缸、气缸等。

4.选择原动机时主要考虑的因素:

工作机械的负载特性、启动和制动的频繁程度;

原动机本身的机械特性能否与工作机械的的调速范围、工作的平稳性等相适应;经济性

包括原动机的原始购置费用、运行费用和维修费用等;能源供应、防止噪声和环境保护

等要求。

5.进行执行机构的型综合时应遵循的基本原则是:

满足执行机构运动规律的要求;

结构简单,运动链短;使执行系统有尽可能好的动力性能;充分考虑动力源的形式;使

机械操作方便,调整容易,安全可靠。

6.机械运动循环图是标明机械在一个运动循环中各执行构件间的运动配合时序关系

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 解决方案 > 解决方案

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1