东方仿真实习报告.docx

上传人:b****8 文档编号:9488201 上传时间:2023-02-04 格式:DOCX 页数:36 大小:48.12KB
下载 相关 举报
东方仿真实习报告.docx_第1页
第1页 / 共36页
东方仿真实习报告.docx_第2页
第2页 / 共36页
东方仿真实习报告.docx_第3页
第3页 / 共36页
东方仿真实习报告.docx_第4页
第4页 / 共36页
东方仿真实习报告.docx_第5页
第5页 / 共36页
点击查看更多>>
下载资源
资源描述

东方仿真实习报告.docx

《东方仿真实习报告.docx》由会员分享,可在线阅读,更多相关《东方仿真实习报告.docx(36页珍藏版)》请在冰豆网上搜索。

东方仿真实习报告.docx

东方仿真实习报告

东方仿真实习报告

  篇一:

仿真机实习报告

  实习报告

  题

  班学

  哈尔滨工程大学

  XX年8月28日

  仿真技术是一门多学科的综合性技术,它以控制论、系统论、相似原理和信息技术为基础,以计算机和专用设备为工具,利用系统模型对实际的或设想的系统进行动态试验。

在仿真中心半天的实习,对仿真中心有了更为充分的了解和认识。

仿真中心老师详细的讲解,让我认识到了仿真的重大意义和学院仿真中心取得的优异成果和科研成绩。

  一回路冷却剂平均温度不变的运行方案

  特点:

当反应堆功率由零提升到100%满功率时,保持一回路冷却剂平均温度不变,压水堆一般都具有负的慢化剂温度系数,因而具有自动调节自稳定特性,使冷却剂温度有自发地趋向于tw不变的趋势。

优点:

1、要求补偿的反应性小2、

  减少了对堆芯结构部件,尤其是对燃料元件的热冲击所引起的疲劳蠕动变应力,增加了元件的使用安全性3、由于从热态零功率至满功率一直保持tw不变,对于

  使用化学毒物控制冷态至热态温度效应的动力堆,可以减少相当数量的控制棒驱动机构,而且控制棒的调节活动减少了,可延长驱动机构的寿命4、不同运行功率时,冷却剂体积原则上是恒定的,理论上可不需要容积补偿,这就大大减小稳压器尺寸及减少一回路压力控制系统的工作负担5、反应堆由零功率至满功率均处于tw恒定状态,需要补偿的温度效应小。

另一方面堆芯结构不发生较大温差

  就可以加大提升功率幅度。

缺点:

1、负荷变化时,二回路冲击较大2、功率变化时。

给水调节和汽轮机调速系统负担重3、回路耐压要求高,系统性可靠性降低。

  二回路压力不变的运行方案

  特点:

当堆芯功率水平变化时,要求一回路冷却剂温度上升,二回路蒸汽压力以及相应的饱和温度保持不变优点:

1、在0%-100%功率提升过程中,二回路的压力不变,使蒸汽发生器给水调节系统、蒸汽调压阀、汽轮机调速系统等的工作条件改善2、可以使二回路设计更加合理,给水泵的特性近似于常规蒸汽动力装置,而不需要提出特殊的要求缺点:

1、由于tav变化大,在符合变动时,

  要求补偿的反应性大,控制系统动作频繁,扰动了堆芯功率分布,甚至导致功率振荡2、负荷变化时,对堆芯结构及元件产生的热冲击应力大,在多次反复作用下,可能导致燃烧元件的蠕变疲劳3、控制棒活动频繁,影响驱动机构寿命4、冷却剂体积波动大,要求稳压器具有更大的容积补偿能力,对压力控制系统和水位控制系统提出了更高的要求5、动力装置的机动性受到限制

  组合运行方案

  低功率区冷却剂平均温度不变,变功率区二回路压力不变;低功率区二回路压力不变,高功率区冷却剂平均温度不变。

这种运行方案的提出是因为上述几种基本运行方案的优点和缺点都过于突出,有的方案对一回路有利,给二回路的设计和运行带来较大困难,有的方案则正好相反。

这种组合运行方案其实是一种折中考虑,将设计、运行和管理的困难由一、二回路共同承担,对于一、二回路都较为有利,但是增加了控制环节,增大了系统的复杂性。

  通过对仿真系统模拟电站运行功率的调节,对功率调节过程中的相关数据进行了记录和分析。

数据显示,随功率下降,反应堆入口温度近似恒定,反应堆出口温度下降,冷却剂平均温度下降,蒸汽压力升高。

此运行方案为入口温度恒定方案,该方案有利于减少温度变化对堆型的冲击和影响,提高堆芯寿命;随功率升高,出口温度升高,冷却剂平均温度升高,可以提高蒸汽发生器的蒸汽出口温度,提高功率。

相比,冷却剂平均温度不变的运行方案,是一种折衷的方案,功率变化造成的负担由两个回路共同承担,目前反应堆多采用此稳定运行方案。

  方案中随功率上升,冷却剂平均温度恒定,进口温度下降,出口温度上升,二回路蒸汽压力和温度下降,蒸汽流量增加;对一回路系统有利,可以较好的实现自稳自调特性,稳压器水位基本保持不变,二回路流量和压力变化不大,对蒸汽发生器恶化汽轮机造成负担。

  我们通过操作电脑上的软件所做的模型,了解了核电站各部分的组成及内部结构。

对核电站有了更加直观的认识。

通过在仿真中心半天的实习,我了解了仿真模拟在核电站调试运行和员工培训方面有着不可代替的作用,不仅仅可以节省实验成本还可以帮助人们更加真实的完成对实验对象的认识,对于核电站的研究和改进有着深刻的意义。

此次仿真实习让我获益匪浅,对核电站运行和仿真模拟有了深刻的印象和初步的认识。

  篇二:

四川理工化工仿真实习报告(日志)

  化工生产实习报告

  这次为期10天的生产实习是我们参与实践活动的很重要的一部分,在陈晓峰老师的指导下我们学习了“东方仿真软件”中的“合成氨”的仿真操作。

可以说我们在这10天的生产实习中学到了很多在平时课堂没学到的知识,受益匪浅。

这次实习仿真软件的操作,使我们不仅进一步熟悉了“合成氨”三个工段的工艺流程,更让我们了解到在工厂的实际操作上是怎么操作的,使我们了解到计算机系统在实际的生产操作中起到的重要作用。

这是一种步骤,更是一种结合。

  我们现在班上大多数同学都已与公司企业签了协议,不久我们就要真正的踏上工作岗位。

所以这一次的生产实习我觉得尤为重要,这不仅是学校给我们的一个课程,而且还是我们对以后在工厂“中控室”的一种初步了解,让我们受益匪浅!

  1.实习目的:

  生产实习是我们应用化工技术专业知识结构中不可缺少的组成部分,并作为一个独立的项目列入专业教学计划中的。

其目的在于通过实习使学生获得基本生产的感性知识,动手能力,理论联系实际,扩大知识面;同时专业实习又是锻炼和培养学生业务能力及素质的重要渠道,培养当代大学生具有吃苦耐劳的精神,逐步实现由学生(学校)到职业者(社会)的转变,培养我们初步担任技术工作的能力。

这些实际知识,对我们学习后面的课程乃至以后的工作,都是十分必要的基础。

只有先进行了解,我们才能去进一步学习,去加深,去进取。

(具体的实习目的是:

1:

了解合成氨的工艺流程以及详细的阅读“合成氨仿真系统的操作说明书”。

2.认识关于合成氨的设备以及控制系统的原理。

3.认真学习仿真系统的操作。

  4.通过学习和操作练习,得出结论和心得。

  2.实习内容:

  ①阅读“年产30万吨的合成氨装置仿真培训系统使用说明书”,对合成氨的工艺流程进行一定初步了解;

  ②了解“年产30万吨的合成氨的工段---净化,转化,合成工段”的工艺流程;

  ③阅读“净化工段”的说明书,并参照其说明书和“成绩测评系统”的步骤完成“冷态开车”和“正常停车”的仿真操作;

  ④阅读“转化工段”的说明书,并参照其说明书和“成绩测评系统”的步骤完成“冷态开车”和“正常停车”的仿真操作;

  ⑤阅读“合成工段”的说明书,并参照其说明书和“成绩测评系统”的步骤完成“冷态开车”和“正常停车”的仿真操作;

  ⑥综合了解“年产30万吨的合成氨的工段---净化,转化,合成三个工段”,认清“工厂控制室操作”的情况;

  3.实习时间:

  四川理工学院“仿真系统培训基地”--------------------12月20日至29日

  1.了解合成氨总的工艺流程---------------------------12月20日上午

  2.完成“净化工段”的冷态开车的操作-----------------12月20日下午

  3.完成“净化工段”的正常停车的操作------------------12月21日整天

  4.完成“转化工段”的冷态开车的操作------------------12月22-23日

  5.完成“转化工段”的正常停车的操作------------------12月24-25日

  6.完成“合成工段”的冷态开车的操作------------------12月26-27日

  7.完成“合成工段”的正常停车的操作------------------12月27-28日

  8.检查“净化,转化,合成”工段的操作---------------12月29日

  4.生产实习的过程内容:

  第一节净化工艺流程简介

  一、脱碳

  变换气中的CO2是氨合成触媒(镍的化合物)的一种毒物,因此,在进行氨合成之前必须从气体中脱除干净。

工艺气体中大部分CO2是在CO2吸收塔101-E中用活化aMDEA溶液进行逆流吸收脱除的。

从变换炉(104-D)出来的变换气(温度60℃、压力),用变换气分离器102-F将其中大部分水分除去以后,进入CO2吸收塔101-E下部的分布器。

气体在塔101-E内向上流动穿过塔内塔板,使工艺气与塔顶加入的自下流动的贫液(解吸了CO2的aMDEA溶液,40℃(TI_24))充分接触,脱除工艺气中所含CO2,再经塔顶洗涤段除沫层后出CO2吸收塔,出CO2吸收塔101-E后的净化气去往净化气分离器121-F,在管路上由喷射器喷入从变换气分离器(102-F)来的工艺冷凝液(由LICA17控制),进一步洗涤,经净化气分离器(121-F)分离出喷入的工艺冷凝液,净化后的气体,温度44℃,压力,去甲烷化工序(106-D),液体与变换冷凝液汇合液由液位控制器LICA26调节去工艺冷凝液处理装置。

  从CO2吸收塔101-E出来的富液(吸收了CO2的aMDEA溶液)先经溶液换热器(109-CB1/2)加热、再经溶液换热器(109-CA1/2),被CO2汽提塔102-E(102-E为筛板塔,共10块塔板)出来的贫液加热至105℃(TI109),由液位调节器LIC4控制,进入CO2汽提塔(102-E)顶部的闪蒸段,闪蒸出一部分CO2,然后向下流经102-E汽提段,与自下而上流动的蒸汽汽提再生。

再生后的溶液进入变换气煮沸器(105-CA/B)、蒸汽煮沸器(111-C),经煮沸成汽液混合物后返回102-E下部汽提段,气相部分作为汽提用气,液相部分从102-E底部出塔。

  从CO2汽提塔102-E底部出来的热贫液先经溶液换热器(109-CA1/2)与富液换热降温后进贫液泵,经贫液泵(107-JA/JB/JC)升压,贫液再经溶液换热器(109-CB1/2)进一步冷却降温后,经溶液过滤器101-L除沫后,进入溶液冷却器(108-CB1/2)被循环水冷却至40℃(TI1_24)后,进入CO2吸收塔101-E上部。

  从CO2汽提塔102-E顶部出来的CO2气体通过CO2汽提塔回流罐103-F除沫后,从塔103-F顶部出去,或者送入尿素装置或者放空,压力由PICA89或PICA24控制。

分离出来的冷凝水由回流泵(108-J/JA)升压后,经流量调节器FICA15控制返回CO2吸收塔101-E的上部。

103-F的液位由LICA5及补入的工艺冷凝液(VV043支路)控制。

  二、甲烷化

  因为碳的氧化物是氨合成触媒的毒物,因此在进行合成之前必须去除干净,甲烷化反应的目的是要从合成气中完全去除碳的氧化物,它是将碳的氧化物通过化学反应转化成甲烷来实现的,甲烷在合成塔中可以看成是惰性气体,可以达到去除碳的氧化物的目的。

  甲烷化系统的原料气来自脱碳系统,该原料气先后经合成气一脱碳气换热器(136-C)预热至℃(TI104)、高变气—脱碳气换热器(104-C)加热到316℃(TI105),进入甲烷化炉(106-D),炉内装有18m3、J-105型镍催化剂,气体自上部进入106-D,气体中的CO和CO2与H2反应生成CH4和H2O。

系统内的压力由压力控制器PIC5调节。

甲烷化炉(106-D)的出

  口温度为363℃(TIAI1002A),依次经锅炉给水预热器(114-C),甲烷化气脱盐水预热器(134-C)和水冷器(115-C),温度降至40℃(TI139),甲烷化后的气体中CO(AR2_1)和CO2(AR2_2)含量降至10ppm以下,进入合成气压缩机吸收罐104-F进行气液分离。

  甲烷化反应如下:

  催化剂CO+3H

  CH4+H2O+

  催化剂CO2+4H2CH4+2H2O+

  三、冷凝液回收系统

  自低变104-D来的工艺气260℃(TI130),经102-F底部冷凝液猝冷后,再经105-C,106-C换热至60℃,进入102-F,其中工艺气中所带的水分沉积下来,脱水后的工艺气进入CO2吸收塔101-E脱除CO2。

102-F的水一部分进入103-F,一部分经换热器E66401换热后进入C66401,由管来的327℃(TI143)的蒸汽进入C66401的底部,塔顶产生的气体进入蒸汽系统,底部液体经E66401,E66402换热后排出。

  下面就看看“合成氨净化工段总图”,结合上面的过程了解。

  第二节转化工艺流程介绍

  概述

  制取合成氨原料气的方法主要有以下几种:

1.固体燃料气法;2.重油气法;3.气态烃法。

其中气态烃法又有蒸汽转化法和间歇催化转化法。

这次实习的仿真软件是针对蒸汽转化法制

  取合成氨原料气而设计的。

  制取合成氨原料气所用的气态烃主要是天然气(甲烷、乙烷、丙烷等)。

蒸汽转化法制取合成氨原料气分两段进行,首先在装有催化剂(镍触媒)的一段炉转化管内,蒸汽与气态烃进行吸热的转化反应,反应所需的热量由管外烧嘴提供。

一段转化反应方程式如下:

  CH4+H22–kj/mol

  CH4+2H22+4H2-kj/mol气态烃转化到一定程度后,送入装有催化剂的二段炉,同时加入适量的空气和水蒸汽,与部分可燃性气体燃烧提供进一步转化所需的热量,所生成的氮气作为合成氨的原料。

二段转化反应方程式如下:

  1.催化床层顶部空间的燃烧反应

  2H2+O22O(g)+484kj/mol

  CO+O22+566kj/mol

  2.催化床层的转化烧反应

  CH4+H22–kj/mol

  CH4+CO22–kj/mol

  二段炉的出口气中含有大量的CO,这些未变换的CO大部分在变换炉中氧化成CO2,从

  而提高了H2的产量。

变换反应方程式如下:

  CO+H22+H2+566kj/mol

  原料气脱硫

  原料天然气中含有左右的硫化物,这些硫化物可以通过物理的和化学的方法脱除。

天然气首先在原料气预热器(141-C)中被低压蒸汽预热,流量由FR30记录,温度由TR21记录,压力由PRC1调节,预热后的天然气进入活性碳脱硫槽(101-DA、102-DA一用一备)进行初脱硫。

然后进用蒸汽透平驱动的单缸离心式压缩机(102-J),压缩到所要求的操作压力。

  压缩机设有FIC12防喘振保护装置,当在低于正常流量的条件下进行操作时,它可以可以把某一给定量的气体返回气水冷器(130-C),冷却后送回压缩机的入口。

经压缩后的原料天然气在一段炉(101-B)对流段低温段加热到230℃(TIA37)左右与103-J段间来氢混合后,进入Co-Mo加氢和氧化锌脱硫槽(108-D),经脱硫后,天然气中的总硫含量降到以下,用AR4记录。

  原料气的一段转化

  脱硫后的原料气与压力为的中压蒸汽混和,蒸汽流量由FRCA2调节。

混合后的蒸汽和天然气以分子比4:

1的比例通过一段炉(101-B)对流段高温段预热后,送到101-B辐射段的顶部,气体从一根总管被分配到八根分总管,分总管在炉顶部平行排列,每一根分总管中的气体又经猪尾管自上而下地被分配到42根装有触媒的转化管中,原料气在一段炉(101-B)辐射段的336根触媒反应管进行蒸汽转化,管外由顶部的144(仿真中为72)个烧嘴提供反应热,这些烧嘴是由MIC1~MIC9来调节的。

经一段转化后,气体中残余甲烷在10%(AR1_4)左右。

  转化气的二段转化

  一段转化气进入二段炉(103-D),在二段炉中同时送入工艺空气,工艺空气来自空气压缩机(101-J),压缩机有两个缸。

从压缩机101-B最终出口管送往二段炉的空气量由FRC3调节,工艺空气可以由于电动阀SP3的动作而停止送往二段炉。

工艺空气在电动阀SP3的后面与少量的中压蒸汽汇合,然后通过101-B对流段预热。

蒸汽量由FI51计量,由MIC19调节,这股蒸汽是为了在工艺空气中断时保护101-B的预热盘管。

开工旁路(LLV37)不通过预热盘,以避免二段转化触媒在用空气升温时工艺空气过热。

  工艺气从101-D的顶部向下通过一个扩散环而进入炉子的燃烧区,转化气中的H2和空气中的氧燃烧产生的热量供给转化气中的甲烷在二段炉触媒床中进一步转化,出二段炉的工艺气残余甲烷含量(AR1_3)在%左右,经并联的两台第一废热锅炉(101-CA/B)回收热量,再经第二废热锅炉(102-C)进一步回收余热后,送去变换炉104-D。

废锅炉的管侧是来自101-F的锅炉水。

102-C有一条热旁路,通过TRC10调节变换炉104-D的进口温度(370℃左右)。

  变换

  变换炉104-D由高变和低变两个反应器,中间用蝶形头分开,上面是高变炉,下面是低变炉。

低变炉底部有蒸汽注入管线,供开车时以及短期停车时触媒保温用。

从第二废热锅炉(102-C)来的转化气约含有12-14%的CO,进入高变炉,在高变触媒的作用下将部分CO转化成CO2,经高温变换后CO含量降到3%(AR9)左右,然后经第三废热锅炉(103-C)回收部分热能,传给来自101-F的锅炉水,气体从103-C出来,进换热器(104-C)与甲烷化炉进气换热,从而得到进一步冷却。

104-C之前有一放空管,供开车和发生事故时高变出口气放空用的,由电动阀MIC26控制。

103-C设置一旁路,由TRC11调节低变炉入口温度。

进入低变炉在低变触媒的作用下将其余CO转化为CO2,出低变炉的工艺气中CO含量约为%(AR10)左右。

开车或发生事故时气体可不进入低变炉,它是通过关闭低变炉进气管上的SP4、打开SP5实现的。

  蒸汽系统

  合成氨装置开车时,将从界外引入、327℃的中压蒸汽约50T/H。

辅助锅炉和废热锅炉所用的脱盐水从水处理车间引入,用并联的低变出口气加热器(106-C)和甲烷化出口气加热器(134-C)预热到100℃左右,进入除氧器(101-U)脱氧段,在脱氧段用低压蒸汽脱除水中溶解氧后,然后在储水段加入二甲基硐肟除去残余溶解氧。

最终溶解氧含量小于7PPb。

  除氧水加入氨水调节PH至,经锅炉给水泵104-J/JA/JB经并联的合成气加热器(123-C),甲烷化气加热器(114-C)及一段炉对流段低温段锅炉给水预热盘管加热到295℃(TI1_44)左右进入汽包(101-F),同时在汽包中加入磷酸盐溶液,汽包底部水经101-CA/CB、102-C、103-C一段炉对流段低温段废热锅炉及辅助锅炉加热部分汽化后进入汽包,经汽包分离出的饱和蒸汽在一段炉对流段过热后送至103-JAT,经103-JAT抽出、327℃中压蒸汽,供各中压蒸汽用户使用。

103-JAT停运时,高压蒸汽经减压,全部进入中压蒸汽管,中压蒸汽一部分供工艺使用、一部分供凝汽透平使用,其余供背压透平使用,并产生低压蒸汽,供111-C、101-U使用,其余为伴热使用在这个工段中,缩合/脱水反应是在三个串联的反应器中进行的,接着是一台分层器,用来把有机物从液流中分离出来。

  篇三:

合成氨仿真实习报告

  南京工业大学

  城建学院

  仿真实习报告书

  刘皓

  1905090228

  安全工程系

  化学化工实验教学中心

  XX年10月

  合成仿真实习报告

  30万吨合成氨装置模型照片

  一、实习的目的

  合成仿真实习是理论联系实际,应用和所学专业知识的一项重要环节,是培养我们动手能力和学习能力的一个重要手段。

仿真实习是以仿真的实习模式,在既保证学生安全又能完美提供实习机会的情况下,学校给予我们的一次专业实践的机会。

是我们在学习专业知识后进行实际运用的重要环节,它对培养我们的动手能力有很大的意义,同时也能使我们了解化工工艺的重点要素,仿真实习是我们走向工作岗位的必要前提。

  二、实习要求

  1.实习装置为合成氨生产仿真装置。

要求了解并熟悉生产过程及控制,包括:

  1)生产方法和原理,原料、催化剂及产品特性;

  2)生产工艺流程(流程中设备、主副管线,过程操作和控制);

  3)各工序工艺条件及控制:

主要设备操作温度、压力和组成;

  4)主要设备型式、结构;

  5)主要设备及管线上的控制仪表及调节方法。

  2.搜集信息途径

  1)听讲座(拟安排工艺及设备、仿真装置及操作等讲座);

  2)现场实习:

熟悉工艺流程、设备、及仿真软件操作,熟悉仿真模型;

  3)阅读实习指导书、流程图、设备图及其它文献资料。

  三、实习内容

  仿真实习的主要内容是:

以河南化肥厂为原型的大型合成氨全流程仿真模型和以宁夏化工厂为原型的合成氨大工段DCS控制系统仿真软件。

两者均以天然气为原料的合成氨工艺,通过仿真实习了解合成氨工艺原理与流程,掌握合成氨生产中的主要参数和DCS控制系统的操作。

  以下为东方仿真软件的合成氨工艺流程。

  

(1)合成氨装置转化工段

  1概述

  转化工段包括下列主要部分:

  原料气脱硫、原料气的一段蒸汽转化、转化气的二段转化、高变、低变、给水、炉水和蒸汽系统。

  2原料气脱硫

  天然气中含有少量硫化物,这些硫化物可以使多种催化剂中毒而不同程度地使其失去活性,硫化氢能腐蚀设备管道。

因此,必须尽可能地除去原料气中的各种硫化物。

  加氢转化主要指在加入氢气的条件下使原料气中有机硫转化为无机硫。

加氢转化不能达到直接脱硫的目的,但经转化后就大大的利于硫的脱除。

在有机硫转化的同时,也能使烯烃类加氢转化为烷氢类从而可减少下一工序蒸汽转化催化剂析炭的可能性。

  在采用钴钼催化剂的条件下,主要进行如下反应:

  R-SH+H2=RH+H2S

  R-S-R’+2H2=RH+R’H+H2S

  C4H4S+4H2=C4H10+H2S

  RC=CR’+H2=RCH2-CH2R’

  氧化锌是一种内表面积颇大,硫容较高的接触反应型脱硫剂。

除噻吩及其衍生物外,脱除硫化氢及各种有机硫化物的能力极高,可将出口气中硫含量降至以下。

  氧化锌脱硫反应:

ZnO+H2S=ZnS+H2O

  原料天然气在原料气预热器(141-C)中被低压蒸汽预热后,进入活性碳脱硫槽(101-DA、102-DA一用一备),进行初脱硫后,经压缩机(102-J)加压。

在一段炉对流段低温段加热到230℃左右与103-J段来的氢混合后进入Co-Mo加氢和氧化锌脱硫槽(108-D)终脱硫后,天然气中的总硫≤。

  3原料气的一段蒸汽转化

  经脱硫后的原料气的总硫含量降至以下,与水蒸汽混合后进行转化反应:

  CH4+H2O=CO+3H2

  CnH2n+2+nH2O=nCO+(2n+1)H2

  由于转化反应是吸热反应,在高温条件下有利于反应平衡及反应速度。

在实际生产中,转化反应分别是一段炉和二段炉中完成。

在一段炉中,烃类和水蒸气的混合气在反应管内镍催化剂的作用下进行转化反应,管外有燃料气燃烧供给反应所需热量,出一段炉转化气温度控制在800℃左右。

  脱硫后的原料气与中压蒸汽混和后,经对流段高温段加热后,进入一段炉(101-B)的336根触媒反应管进行蒸汽转化,管外由顶部的144个烧嘴提供反应热,经一段转化后,气体中残余甲烷在10%左右。

  4转化气的二段转化

  为了进一步转化,需要更高的温度。

在二段炉中加入预热后的空气,利用H2和O2的燃烧反应,产生高热,促使CH4进一步转化。

  一段转化气进入二段炉(103-D),在二段炉中同时送入工艺空气,工艺空气来自空气压缩机(101-J)加入少量中压蒸汽并经对流段高温段预热,转化气中的H2和空气中的氧燃烧产生的热量供给转化气中

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工作范文 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1