沪科版八年级数学上册第11章 平面直角坐标系.docx
《沪科版八年级数学上册第11章 平面直角坐标系.docx》由会员分享,可在线阅读,更多相关《沪科版八年级数学上册第11章 平面直角坐标系.docx(24页珍藏版)》请在冰豆网上搜索。
沪科版八年级数学上册第11章平面直角坐标系
第11章平面直角坐标系
一、选择题(共16小题)
1.在平面直角坐标系中,已知点P的坐标是(﹣1,﹣2),则点P关于原点对称的点的坐标是( )
A.(﹣1,2)B.(1,﹣2)C.(1,2)D.(2,1)
2.△ABO与△A1B1O在平面直角坐标系中的位置如图所示,它们关于点O成中心对称,其中点A(4,2),则点A1的坐标是( )
A.(4,﹣2)B.(﹣4,﹣2)C.(﹣2,﹣3)D.(﹣2,﹣4)
3.在平面直角坐标系中,点P(﹣20,a)与点Q(b,13)关于原点对称,则a+b的值为( )
A.33B.﹣33C.﹣7D.7
4.在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )
A.(4,﹣3)B.(﹣4,3)C.(0,﹣3)D.(0,3)
5.在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
6.如图,在△ABO中,AB⊥OB,OB=,AB=1.将△ABO绕O点旋转90°后得到△A1B1O,则点A1的坐标为( )
A.(﹣1,)B.(﹣1,)或(1,﹣)C.(﹣1,﹣)D.(﹣1,﹣)或(﹣,﹣1)
7.在平面直角坐标系中,把点P(﹣5,3)向右平移8个单位得到点P1,再将点P1绕原点旋转90°得到点P2,则点P2的坐标是( )
A.(3,﹣3)B.(﹣3,3)C.(3,3)或(﹣3,﹣3)D.(3,﹣3)或(﹣3,3)
8.如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是( )
A.△ABC绕点C顺时针旋转90°,再向下平移3
B.△ABC绕点C顺时针旋转90°,再向下平移1
C.△ABC绕点C逆时针旋转90°,再向下平移1
D.△ABC绕点C逆时针旋转90°,再向下平移3
9.如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°后点P的对应点的坐标是( )
A.(,1)B.(1,﹣)C.(2,﹣2)D.(2,﹣2)
10.在平面直角坐标系内,点P(﹣2,3)关于原点的对称点Q的坐标为( )
A.(2,﹣3)B.(2,3)C.(3,﹣2)D.(﹣2,﹣3)
11.将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是( )
A.(﹣3,2)B.(﹣1,2)C.(1,2)D.(1,﹣2)
12.将点P(﹣2,3)向右平移3个单位得到点P1,点P2与点P1关于原点对称,则P2的坐标是( )
A.(﹣5,﹣3)B.(1,﹣3)C.(﹣1,﹣3)D.(5,﹣3)
13.点A(3,﹣1)关于原点的对称点A′的坐标是( )
A.(﹣3,﹣1)B.(3,1)C.(﹣3,1)D.(﹣1,3)
14.在直角坐标系中,点B的坐标为(3,1),则点B关于原点成中心对称的点的坐标为( )
A.(3,﹣1)B.(﹣3,1)C.(﹣1,﹣3)D.(﹣3,﹣1)
15.在平面直角坐标系中,点A(﹣2,1)与点B关于原点对称,则点B的坐标为( )
A.(﹣2,1)B.(2,﹣1)C.(2,1)D.(﹣2,﹣1)
16.在平面直角坐标系中,P点关于原点的对称点为P1(﹣3,﹣),P点关于x轴的对称点为P2(a,b),则=( )
A.﹣2B.2C.4D.﹣4
二、填空题(共12小题)
17.若点(a,1)与(﹣2,b)关于原点对称,则ab= .
18.在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90°,得到的点A′的坐标为 .
19.已知A点的坐标为(﹣1,3),将A点绕坐标原点顺时针90°,则点A的对应点的坐标为 .
20.如图,△ABO中,AB⊥OB,AB=,OB=1,把△ABO绕点O旋转120°后,得到△A1B1O,则点A1的坐标为 .
21.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是 .
22.设点M(1,2)关于原点的对称点为M′,则M′的坐标为 .
23.已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是 .
24.点P(5,﹣3)关于原点的对称点的坐标为 .
25.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是 .
26.已知点P(3,2),则点P关于y轴的对称点P1的坐标是 ,点P关于原点O的对称点P2的坐标是 .
27.在平面直角坐标系中,点P(5,﹣3)关于原点对称的点的坐标是 .
28.若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为 .
三、解答题(共2小题)
29.在平面直角坐标系xOy中,已知A(﹣1,5),B(4,2),C(﹣1,0)三点.
(1)点A关于原点O的对称点A′的坐标为 ,点B关于x轴的对称点B′的坐标为 ,点C关于y轴的对称点C的坐标为 .
(2)求
(1)中的△A′B′C′的面积.
30.如图,在平面直角坐标系中,A(﹣2,2),B(﹣3,﹣2)
(1)若点C与点A关于原点O对称,则点C的坐标为 ;
(2)将点A向右平移5个单位得到点D,则点D的坐标为 ;
(3)由点A,B,C,D组成的四边形ABCD内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.
第11章平面直角坐标系
参考答案与试题解析
一、选择题(共16小题)
1.在平面直角坐标系中,已知点P的坐标是(﹣1,﹣2),则点P关于原点对称的点的坐标是( )
A.(﹣1,2)B.(1,﹣2)C.(1,2)D.(2,1)
【考点】关于原点对称的点的坐标.
【专题】压轴题.
【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),据此即可求得点P关于原点的对称点的坐标.
【解答】解:
∵点P关于x轴的对称点坐标为(﹣1,﹣2),
∴点P关于原点的对称点的坐标是(1,2).
故选:
C.
【点评】此题主要考查了关于原点对称点的坐标性质,这一类题目是需要识记的基础题,要熟悉关于原点对称点的横纵坐标变化规律.
2.△ABO与△A1B1O在平面直角坐标系中的位置如图所示,它们关于点O成中心对称,其中点A(4,2),则点A1的坐标是( )
A.(4,﹣2)B.(﹣4,﹣2)C.(﹣2,﹣3)D.(﹣2,﹣4)
【考点】关于原点对称的点的坐标.
【专题】几何图形问题.
【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.
【解答】解:
∵A和A1关于原点对称,A(4,2),
∴点A1的坐标是(﹣4,﹣2),
故选:
B.
【点评】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.
3.在平面直角坐标系中,点P(﹣20,a)与点Q(b,13)关于原点对称,则a+b的值为( )
A.33B.﹣33C.﹣7D.7
【考点】关于原点对称的点的坐标.
【分析】先根据关于原点对称的点的坐标特点:
横坐标与纵坐标都互为相反数,求出a与b的值,再代入计算即可.
【解答】解:
∵点P(﹣20,a)与点Q(b,13)关于原点对称,
∴a=﹣13,b=20,
∴a+b=﹣13+20=7.
故选:
D.
【点评】本题主要考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:
关于原点对称的点,横坐标与纵坐标都互为相反数.
4.在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )
A.(4,﹣3)B.(﹣4,3)C.(0,﹣3)D.(0,3)
【考点】关于原点对称的点的坐标;坐标与图形变化-平移.
【分析】根据关于原点的点的横坐标互为相反数,纵坐标互为相反数,可得关于原点的对称点,根据点的坐标向左平移减,可得答案.
【解答】解:
在直角坐标系中,将点(﹣2,3)关于原点的对称点是(2,﹣3),再向左平移2个单位长度得到的点的坐标是(0,﹣3),
故选:
C.
【点评】本题考查了点的坐标,关于原点的点的横坐标互为相反数,纵坐标互为相反数;点的坐标向左平移减,向右平移加,向上平移加,向下平移减.
5.(2015•贵港)在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
【考点】关于原点对称的点的坐标.
【分析】根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,则m=2且n=﹣3,从而得出点M(m,n)所在的象限.
【解答】解:
根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,
∴m=2且m﹣n=﹣3,
∴m=2,n=5
∴点M(m,n)在第一象限,
故选A.
【点评】本题考查了平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,该题比较简单.
6.如图,在△ABO中,AB⊥OB,OB=,AB=1.将△ABO绕O点旋转90°后得到△A1B1O,则点A1的坐标为( )
A.(﹣1,)B.(﹣1,)或(1,﹣)C.(﹣1,﹣)D.(﹣1,﹣)或(﹣,﹣1)
【考点】坐标与图形变化-旋转.
【分析】需要分类讨论:
在把△ABO绕点O顺时针旋转90°和逆时针旋转90°后得到△A1B1O时点A1的坐标.
【解答】解:
∵△ABO中,AB⊥OB,OB=,AB=1,
∴∠AOB=30°,
当△ABO绕点O顺时针旋转90°后得到△A1B1O,
则易求A1(1,﹣);
当△ABO绕点O逆时针旋转90°后得到△A1B1O,
则易求A1(﹣1,).
故选B.
【点评】本题考查了坐标与图形变化﹣旋转.解题时,注意分类讨论,以防错解.
7.在平面直角坐标系中,把点P(﹣5,3)向右平移8个单位得到点P1,再将点P1绕原点旋转90°得到点P2,则点P2的坐标是( )
A.(3,﹣3)B.(﹣3,3)C.(3,3)或(﹣3,﹣3)D.(3,﹣3)或(﹣3,3)
【考点】坐标与图形变化-旋转;坐标与图形变化-平移.
【专题】分类讨论.
【分析】首先利用平移的性质得出点P1的坐标,再利用旋转的性质得出符合题意的答案.
【解答】解:
∵把点P(﹣5,3)向右平移8个单位得到点P1,
∴点P1的坐标为:
(3,3),
如图所示:
将点P1绕原点逆时针旋转90°得到点P2,则其坐标为:
(﹣3,3),
将点P1绕原点顺时针旋转90°得到点P3,则其坐标为:
(3,﹣3),
故符合题意的点的坐标为:
(3,﹣3)或(﹣3,3).
故选:
D.
【点评】此题主要考查了坐标与图形的变化,正确利用图形分类讨论得出是解题关键.
8.如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是( )
A.△ABC绕点C顺时针旋转90°,再向下平移3
B.△ABC绕点C顺时针旋转90°,再向下平移1
C.△ABC绕点C逆时针旋转90°,再向下平移1
D.△ABC绕点C逆时针旋转90°,再向下平移3
【考点】坐标与图形变化-旋转;坐标与图形变化-平移.
【分析】观察图形可以看出,Rt△ABC通过变换得到Rt△ODE,