Photodegradation of methyl orange with PANImodified BiOCl photocatalyst under visible light irradia.docx
《Photodegradation of methyl orange with PANImodified BiOCl photocatalyst under visible light irradia.docx》由会员分享,可在线阅读,更多相关《Photodegradation of methyl orange with PANImodified BiOCl photocatalyst under visible light irradia.docx(13页珍藏版)》请在冰豆网上搜索。
PhotodegradationofmethylorangewithPANImodifiedBiOClphotocatalystundervisiblelightirradia
PhotodegradationofmethylorangewithPANI-modifiedBiOCl
photocatalystundervisiblelightirradiation
QizhaoWanga,b*,JuanHuia,JiajiaLia,YuxiaCaia,ShuqunYina,FangpingWanga,*,BitaoSua
aCollegeofChemistryandChemicalEngineering,NorthwestNormalUniversity,Lanzhou730070,China
bKeyLaboratoryofEco-Environment-RelatedPolymerMaterials,MinistryofEducationofChina,KeyLaboratoryofGansuPolymerMaterials,Lanzhou730070,China
*Correspondingauthor.Tel:
+869317972677;Fax:
+869317975521.
E-mailaddresses:
wangqizhao@;qizhaosjtu@(Q.Wang)
wangfplz@(F.Wang)
ABSTRACT
PhotocatalystBiOClmodifiedbypolyaniline(PANI/BiOCl)wassynthesizedviaafacilechemisorptionsmethod.X-raydiffraction(XRD),Scanningelectronmicroscopy(SEM)andUV-visdiffusereflectancespectroscopy(DRS)wereemployedtostudythephasestructure,morphologyandopticalpropertiesofthesamples.TheresultsshowedthatthePANIincreasedabsorptionintensityandabsorptionbandsofthepureBiOCl.Photodegradationofmethylorange(MO)onthesampleswereinvestigatedundervisiblelightirradiationand7wt%PANI/BiOClcompositeshowedthehighestphotocatalyticactivity.TheenhancedphotocatalyticperformancecouldbeattributedtoPANI/BiOClcompositesandthesynergisticeffectbetweenPANIandBiOCl.Accordingtoexperimentalresults,thepossiblephotocatalyticmechanismofthePANI/BiOClphotocatalystswasproposed.
Keywords:
PANI/BiOCl;Photocatalysis;Synergisticeffect;photodegradation
1.Introduction
SinceFujishimaandHondareportedTiO2photochemicalelectrodeforsplittingwaterin1972[1],thestudyonthedevelopmentofphotocatalystsusedfortheremovalofenvironmentalpollutantsandtheutilizationofsolarenergyhasattractedincreasingattention[2].Duringthelasttwodecades,besidesthefocusedworkonTiO2modifications,manyeffortsweremadetodevelopothernovelefficientphotocatalysts.Thereportedphotocatalystsystems,tothebestofourknowledge,canbegenerallyclassifiedasoxides[3],sulfides[4],oxysulfides[5],nitrides[6]andoxynitride[7].Recently,Bi-basedoxychlorides(BiOCl)havedrawnmuchattentionfortheirpotentialapplicationinthetreatmentofcontaminantsinwaterandenvironmental[8-9].BiOClwithawidebandgap(3.19-3.60eV)canonlyabsorbultravioletlight,whichismerelyabout3%ofthesolarenergyspectrum[10-12].TheintrinsicpropertyofBiOCllimitsitsefficientutilizationofsolarenergyaswellasphotocatalyticactivity.InordertoextendthephotoresponseofBiOCltothevisibleregion,manymodificationapproacheshavebeenproposed,suchasmetaldoping(Mn/BiOCl[13]).ButmanyattemptshavebeenadoptedtoenhanceitsactivitybymodifyingBiOClwithothersemiconductorsthatcanabsorbvisiblelight,suchas,Ag/AgCl/BiOCl[14],Ag/AgX/BiOX[15],WO3/BiOCl[16],Fe3O4/BiOCl[17],Bi2S3/BiOCl[18],Bi2O3/BiOCl[19],BiOCl/BiOI[20]andBiOI/BiOCl[21].
Recently,theconjugatedpolymerswithextendingπ-conjugatedelectronsystemssuchaspolyaniline,polypyrrole,polythiopheneandtheirderivativeshaveshowngreatpromisingduetotheirwideabsorptionregioninthevisiblelightrange,highmobilityofchargecarriersandexcellentstability[22].Furthermore,comparedwithdopednoblemetal,PANIisrelativelycheapandeasilysynthesized.SomestudieshavebeenpublishedonthecombinationofconductivepolymerandTiO2toimprovetheirphotocatalyticperformanceofUVandvisiblelight[23-26].
Inourpresentwork,thenovelphotocatalystsaredevelopedbetweenBiOClandPANItomakeefficientuseofvisiblelight.PureBiOClandPANIshowedverylowphotocatalyticactivityundervisiblelight,theirnanocompositesinduceddecompositionofmethylorange(MO).ThemechanismwithPANI/BiOClphotocatalystshasbeenproposed.BothPANI/BiOClcouldabsorbvisiblelightandthesynergisticeffectremarkablyenhancedphotocatalyticactivity.
2.Experimental
2.1PreparationofthePANInanoparticle
Allreagents(SinopharmChemicalReagentCo.,Ltd)wereofanalyticgradeandusedwithoutfurthertreatment.5.705gofammoniumperoxydisulfatewasdissolvedinto50mLofwaterandwasaddedinto2.328gofanilinemonomerbythedropwise,whichconstantlystirringatlowtemperature.Thepolymerizationwasallowedtoproceedfor24handthegreenish-blackprecipitatedofpolyanilinewasobtained.Theprecipitateswerecentrifuged,andthenwashedwithdistilledwaterandethanol.Theresultingpolyanilinewasfinallydriedundervacuumovenfor12hat60℃.
2.2PreparationoftheBiOClsample
BiOClpowderwassynthesizedbyahydrolysismethod.Bi2O3wasdissolvedinexcessiveconcentratedhydrochloricacidtoreceiveatransparentBiCl3-HClaqueous.WhenthepHvalueofthesolutionwasadjustedbetween2and3withammonia,thewhitecolloidappeared.Afterthecolloidwasheatedat40℃forhalfanhour,apowderyBiOClmaterialconsistingofsmallplate-likecrystalswasobtained.Theprecipitateswerewashedseveraltimeswithwaterandethanoluntilnochloridionwasleftinthesolution,andthendriedat60℃inovenfor6hbeforefurthercharacterization[27].
2.3PreparationofthePANI/BiOClphtocatalysts
ThePANI/BiOClphotocatalystswerepreparedasfollows:
PANIwasdispersedintetrahydrofuran(THF)toobtainaconcentrationof0.45g/L-1solution,andanamountofBiOClpowderwasaddedto100mLoftheabovesolutionandthenstirredfor24h.Theprecipitatewascentrifugedandwashedseveraltimesbydistilledwaterandethanol,andthentransferredtooventodryat80°Cfor6h.Accordingtothismethod,differentweightratiosofPANI/BiOClphotocatalystsfrom1wt%to9wt%weresynthesized.
2.4Characterizationofthephtocatalysts
X-raydiffractionpatterns(XRD)ofthesamplespreparedwererecordedonaRigakuX-raydiffractometerD/MAX-2200/PCequippedwithCuKαradiation(40kV,20mA).ThestructuralinformationofthesampleswasmeasuredbyFouriertransformspectrophotometer(FT-IR,Vertex70,Bruker)withKBrasthereferencesample.ThesurfacemorphologyofproductswasobservedusingJSM-6701Ffieldemissionscanningelectronmicroscope(FE-SEM).UV-visibleDiffuseReflectancespectroscopy(DRS)ofpowdersampleswascarriedoutatroomtemperatureusingaShimadzuModel2550UV-visiblespectrophotometeroverawavelengthrangeof200-800nm.ThereflectancespectraweretransformedtoabsorptionintensitybyusingKubelka-Munkmethod.Thephotoluminescence(PL)spectraweremeasuredatroomtemperatureunder390nmexcitationwavelength(PE,LS-55).
2.5Measurementofphotocatalyticactivity
Thephotocatalyticactivitiesofthesampleswereevaluatedbythedegradationofmethylorange(MO)inasinglecompartmentphotoreactor.Photocatalyticreactionwaspreformedinaquartztubereactor.0.05gofPANI/BiOClphotocatalystswereplacedintheaqueoussolutionofMO(50mL,10mg/L).Ahighpressurexenonshortarclamp(CHF-XM35-500W,BeijingChangtuoCo.)wasservedasthevisiblelightsource,aglassfilter(ZUL0400,AsahiSpectraCo.)wasaddedtoallowvisiblelight(λ>420nm)topassthrough.Thesuspensionswerestirredfor1htoreachadsorption-desorptionequilibriumofMOmoleculesonthesurfaceofcatalyst.Duringthephotoreaction,about4mLofsuspensionwascollectedatgiventimeintervalsandcentrifugedtoremovetheparticles.TheconcentrationofMOwasdeterminedbyrecordingthevariationsofsupernatantat464nmusingUV-visspectrophotometer(TU–1901,BeijingPgeneral).
3.ResultsandDiscussion
3.1.Crystalstructureandmorphology
Fig.1showstheXRDpatternsoftheBiOClandPANI/BiOClphotocatalysts.ThehydrolysissynthesizedBiOClwascrystallizedintoastandardtetragonalstructure(JCPDS06-0249).Themaindiffractionpeakpositionsoftheobtainedproductsappearat11.98º,24.10ºand33.45º,whichcorrespondtothe(001),(101)and(102)crystalfacesofBiOCl,respectively.ThecrystallatticeparametersofBiOClwerecalculatedtobea=b=0.3891Å,c=0.7369Å,whichwereconsistentwithliterature[27].TheXRDpatternsofPANI/BiOClphotocatalystshardlychangedinpeakpositionsandshapescomparedwiththeBiOCl,indicatingthatthemodificationwithPANIdidnotinfluencethelatticestructureofBiOCl.Inaddition,thepeakintensitiesoftheBiOCldecreasedgraduallyuponenhancingthePANIcontents,soitcouldbeascribedtothedecreasedparticlesizeandincreaseddispersityoftheBiOClnanoparticles.
Fig.2showstheSEMimagesoftheas-preparedPANI,BiOCland7wt%PANI/BiOClrespectively.AsshowninFig.2A,theSEMimageofPANIrevealedthattheas-preparedsamplesconsistedofamorphousparticlesandthediameterofthemicrosphereswasaround100nmto300nm.InFig.2B,itcouldbeseenclearlythattheBiOClwasdominatedwithsurfacesmoothplatesandthethicknessisabout50nm.InFig.2C,the7wt%PANI/BiOClwasmainlycomposedofmanyplateswithmanysmallparticlesdispersiononthesurfaceofplates.
Fig.3showstheFT-IRspectraofPANI,BiOCland7wt%PANI/BiOCl.Thestrongpeaksatlowfrequency(about500cm−1)wereattributedtotheBi-OvibrationofchemicalbondsinBiOCl[28].ThespectraofPANImainlyincludedthecharacteristicabsorptionbandsasfollowing:
1554cm−1(C=Cstretchingmodeforthequinonoidunit),1479cm−1(C=Cstretchingmodeforbenzenoidunit),1298cm−1and1242cm−1(C-Nstretchingmodeofbenzenoidunit)and1122cm−1(aplanebendingvibrationofC-H)[29].Forthespectrumof7wt%PANI/BiOCl,thecharacteristicpeaksofPANIat1554cm−1,1479cm−1,1298cm−1,1242cm−1and1122cm−1alsoappeare