小学数学长方体正方体表面积典型例题.docx
《小学数学长方体正方体表面积典型例题.docx》由会员分享,可在线阅读,更多相关《小学数学长方体正方体表面积典型例题.docx(10页珍藏版)》请在冰豆网上搜索。
小学数学长方体正方体表面积典型例题
一、表面积
1.一个无盖的正方体的玻璃鱼缸,棱长为7分米,制作这个鱼缸至少需要多大面积的玻璃?
2.教室长为9米,宽为6米,高为3米,用涂料粉刷四壁和天花板,扣除门窗面积20平方米,要粉刷的面积是多少平方米?
3. 国家游泳中心水立方体育馆外形为长方体,长是177米,宽是177米,高为30米,他四周的总面积是多少?
1、 一个长方体的长是8厘米,宽是4厘米,高是2厘米,这个长方体的表面积是多少?
2、 一个正方体的棱长是5厘米,它的表面积是多少平方厘米?
3、用一根48厘米的铁丝扎成一个正方体,这个正方体的表面积是多少平方厘米?
4、一个正方体的棱长和为24厘米,它的表面积是多少平方厘米?
4、 把一个棱长为5厘米的正方体,锯成3个长方体,它的表面积增加了多少平方厘米?
5、 把3个棱长为4厘米的正方体拼成一个长方体,这个长方体的表面积比原来的3个正方体的表面积之和减少了多少?
6、 一个无盖的长方体铁皮水桶,长是8分米,宽是6分米,高是0.5分米,做这样一个水桶至少需要多少平方米的铁皮?
7、 某商店制作的广告箱是长方体,长1.5米,宽1.2米,高2.5米,如果在它的四周贴一圈广告纸,贴广告纸的面积是多少平方米?
8、 学校要粉刷教室,已知教室的长是8米,宽是6米,高是3米,扣除门窗黑板的面积是11.5平方米,如果每平方米需要花3.5元涂料费,粉刷这个教室需要花费多少元?
9、 一个长为10米,宽为3米,高为6米的教室的占地面积是多少?
它的右侧面的周长是多少?
10、 某型号洗衣机,底面长10分米,宽5分米,高12分米,要给这个洗衣机做个布罩,至少需要多大面积的布?
11、 一个正方体,它的一个面的周长是60厘米,这个正方体的表面积是多少?
12、 把四个棱长为5厘米的正方体木块排成一排后拼成一个长方体,这个长方体的表面积是多少?
一、高的变化引起表面积的变化。
1、一个长方体,如果高增加2厘米就成了正方体,而且表面积要增加56平方厘米,原来这个长方体的表面积是多少平方厘米?
2、一个长方体,如果高减少2厘米就成了正方体,而且表面积要减少56平方厘米,原来这个长方体的表面积是多少平方厘米?
3、一个长方体,如果长减少2厘米就成了一个正方体,而且表面积要减少56平方厘米。
原来这个长方体的表面积是多少平方厘米?
4、一个长方体,长a分米,宽b分米,高h分米,如果高减少3分米,这个长方体表面积比原来减少( )平方分米?
二、切 段的变化
1、一个长方体长2米,截面是边长3厘米的正方形,将这个长方体木料锯成五段后,表面积一共增加了多少平方厘米?
2、将一个长3米的长方体木料横截面是个正方形,将其平均截成3段,表面积一共增加了0.36平方分米,这根木料的表面积是多少平方分米?
3、一个正方体的表面积是48平方厘米,将它平均分成两个小长方体,每个小长方体的表面积是多少?
4、拼。
(拼表面积发生变化,体积不变)
1、用8个棱长都是2厘米的正方体拼成一个长方体,拼成的长方体的表面积最多是多少平方厘米?
最少是多少平方厘米?
2、用12个棱长都是2厘米的正方体拼成一个长方体,一共有多少种拼法,每种拼法拼成的长方体的表面分别是多少?
3、用四个棱长都是3厘米的正方体拼成一个长方体,拼成的长方体的表面积可能是多少?
5、切
1、将一个长8厘米,宽6厘米,高5厘米的长方体切成两个小长方体,表面积最多增加多少平方厘米?
最少增加多少平方厘米?
2、将三个长8厘米,宽6厘米,高5厘米的长方体拼成一个大长方体,表面积最多减少多少平方厘米?
最少减少多少平方厘米?
六、扩大和增加倍数。
1、一个正方体棱长扩大2倍,表面积扩大( )倍,棱长和增加( )倍。
2、一个正方体的棱长增加2倍,表面积增加( )倍,棱长和增加( )倍。
1、把一个棱长6厘米的正方体方块,锯成棱长2厘米的小正方体木块,表面积增加多少平方厘米?
八、挖
1、用8个小正方体木块拼成一个大的正方体,如果拿走1个小方块,它的表面积和原来比( )。
A增加了 B减少了 C没有变化 D无法判断
2、在棱长1分米的正方体的顶点处挖去一个棱长1厘米的小正方体,剩下物体的表面积是多少?
3、在一个棱长4厘米的正方体六个面的中心都挖去一个棱长1厘米的小正方体,剩下物体的表面积是多少平方厘米?
4、一个长方体12条棱长度的总和是48厘米,底面周长是18厘米,高是多少厘米?
25、一个长方体的木块,截成两个完全相等的正方体。
两个正方体棱长之和比原来长方体棱长之和增加40厘米,求原长方体的长是多少厘米?
26、一根横截面为正方形的长方体木料,表面积为114平方厘米,锯去一个最大正方体后,表面积为54平方厘米,锯下的正方体木料表面积是多少?
27、一个正方体和一个长方体,拼一个新长方体,新长方体的表面积比原长方体增加60平方厘米,求正方体的表面积。
27、大正方体棱长是小正方体棱长的2倍,大正方体的体积比小正方体的体积多21立方分米,小正方体的体积是多少?
长方体和正方体典型习题
棱长和问题:
1. 一个长方体长是10分米,宽是8分米,高是6分米,这个长方体的棱长总和是多少分米?
2. 用一根长80分米的铁丝焊接成一个长10分米,宽6分米的长方体框架,高是多少分米?
3.商店营业员用一根塑料带为顾客捆扎两个食品盒,每个食品盒的长、宽、高分别是15厘米、11厘米、4厘米,如右图那样捆扎一道并留下18厘米长为手提环,这样一共需要多少厘米长的塑料带?
4.一个长方体的长宽高分别是5厘米,4厘米,3厘米,一个正方体的棱长总和与这个长方体的棱长总和相等,这个正方体的棱长是多少厘米?
5.一个长方体中相交于一个顶点的三条棱的长度和是15分米,这个长方体的棱长总和是多少分米?
6.用一根长60厘米的铁丝围成一个长8CM,宽5CM的长方体框架,这个长方体框架的高是多少厘米?
7.把一根长84米的铁丝围成一个正方体框架,棱长是多少分米?
8.一个长方体相交于同一顶点的三条棱长度分别是10厘米,5分米,6厘米,这个长方体的棱长总和是多少分米?
9.有一个长方体木块正好可以切成两个完全相同的正方体方块,已知长方体木块的棱长总和是80厘米,求切成的每个正方体木块的棱长总和。
表面积问题:
1.一个长方体的无盖铁皮水桶,长和宽都是3分米,深5分米。
做一对这样的水桶,至少需要多少平方分米铁皮?
2.一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,如果商标纸的接头处是4厘米,这张商标纸的面积是多少平方厘米?
3. 有一块正方形铁皮,从四个顶点分别剪下一个边长5厘米的正方形后,所剩部分正好焊接
成一个无盖的正方体铁皮盒。
原来正方形铁皮的面积是多少平方厘米?
10.一个长方体的棱长和是72厘米,它的长是9厘米,宽6厘米,它的表面积是多少平方厘米?
11.一个房间的长6米,宽3.5米,高3米,门窗面积是8平方米。
现在要把这个房间的四壁和顶面粉刷水泥,粉刷水泥的面积是多少平方米?
如果每平方米需要水泥4千克,一共要水泥多少千克?
12.做一节长12分米,宽和高都是10厘米的通风管,至少需要铁皮多少平方厘米?
做12节这样的通风管呢?
13.一个长方体的侧面展开是一个边长为20厘米的正方形,做这样20个这样的长方体需要多少平方厘米的硬纸?
14.一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上高6厘米的商标纸,这张商标纸的面积是多少平方厘米?
侧面积问题:
1.一个长方体侧面积是360平方厘米,高是9厘米,长是宽的3倍,求它的表面积。
叠放问题:
1. 把两个棱长分别是8厘米和6厘米的正方体叠放在一起。
叠放后新物体的体积和表面积分别是多少?
切、拼求表面积和体积问题:
1.一个长方体正好可以切成5个同样大小的正方体,切成的5个正方体的表面积比原来长方表面积多了200平方厘米,求原来长方体的表面积是多少?
2.把三个棱长都是4厘米的正方体拼成一个长方体,拼成的长方体表面积是多少?
3.把4个棱长2厘米的正方体拼成一个长文体一,拼成的长方体表面积是多少?
表面涂色的正方体规律及应用问题:
1.下图是将涂色的正方体割成小正方体的示意图:
2.将一个棱长8分米的橙色大正方体,切成棱长是2分米的小正方体。
切开后三面涂色的有( )个,两面涂色的正方体有( )个,一面涂色的正方体有( )个。
3.将棱长1米的正方体切成棱长1分米的正方体,一共能切成( )个,如果将这些小正方体排成一排,长( )米。
棱长扩大倍数引起棱长总,表面积,体积变化问题:
1.正方体的棱长扩大4倍,棱长总和扩大( )倍,表面积扩大( )倍。
2.正方体的棱长扩大n倍,棱长总和扩大( )倍,表面积扩大( )倍。
3.长方体的长宽高都扩大2倍,棱长总和扩大( )倍,表面积扩大( )倍。