数学专业英语7.docx
《数学专业英语7.docx》由会员分享,可在线阅读,更多相关《数学专业英语7.docx(11页珍藏版)》请在冰豆网上搜索。
数学专业英语7
MathematicalEnglish
Dr.XiaominZhang
Email:
zhangxiaomin@
§2.7SequencesandTheirLimits
TEXTAThedefinitionofsequences
IneverydayusageoftheEnglishlanguage,thewords“sequence”and“series”aresynonyms,andtheyareusedtosuggestasuccessionofthingsoreventsarrangedinsomeorder.Inmathematicsthesewordshavespecialtechnicalmeanings.Theword“sequence”isemployedasinthecommonuseofthetermtoconveytheideaofasetofthingsarrangedinorder,buttheword“series”isusedinasomewhatdifferentsense.Theconceptofasequencewillbediscussedinthissection,andserieswillbedefinedinSection11.
Ifforeverypositiveintegernthereisassociatedarealorcomplexnumberan,thentheorderedset
a1,a2,a3,…,an,…
issaidtodefineaninfinitesequence.Theimportantthinghereisthateachmemberofthesethasbeenlabeledwithanintegersothatwemayspeakofthefirstterma1,thesecondterma2,and,ingeneral,thenthterman.Eachtermanhasasuccessoran+1andhencethereisno”last”term.
Themostcommonexamplesofsequencescanbeconstructedifwegivesomeruleorformulafordescribingthenthterm.Thus,forexample,theformulaan=1/ndefinesasequencewhosefirstfivetermsare
1,1/2,1/3,1/4,1/5.
Sometimestwoormoreformulasmaybeemployedas,forexample,
a2n-1=1,a2n=2n2,
thefirstfewtermsinthiscasebeing
1,2,1,8,1,18,1,32,1.
Anothercommonwaytodefineasequenceisbyasetofinstructionswhichexplainshowtocarryonafteragivenstart.Thuswemayhave
a1=a2=1,an+1=an+an-1forn2.
ThisparticularruleisknownasarecursionformulaanditdefinesafamoussequencewhosetermsarecalledtheFibonaccinumbers.Thefirstfewtermsare
1,1,2,3,5,8,13,21,34
Inanysequencetheessentialthingisthattherebesomefunctionfdefinedonthepositiveintegerssuchthatf(n)isthenthtermofthesequenceforeachn=1,2,3,…..Infact,thisisprobablythemostconvenientwaytostateatechnicaldefinitionofsequence.
DEFINITIONAfunctionfwhosedomainisthesetofallpositiveintegers1,2,3,…iscalledaninfinitesequence.Thefunctionvaluef(n)iscalledthenthtermofthesequence.
Therangeofthefunction(thatis,thesetoffunctionvalues)isusuallydisplayedbywritingthetermsinorder,thus:
f
(1),f
(2),f(3),…,f(n),…
Forbrevity,thenotation{f(n)}isusedtodenotethesequencewhosenthtermisf(n).Veryoftenthedependenceonnisdenotedbyusingsubscripts,andwewritean,sn,xn,un,orsomethingsimilarinsteadoff(n).Unlessotherwisespecified,allsequences(suchasarithmeticprogressionandgeometricprogression)inthischapterareassumedtohaverealorcomplexterms.
Notations
SeriesAseriesisaninfiniteorderedsetoftermscombinedtogetherbytheadditionoperator.Theterminfiniteseriesissometimesusedtoemphasizethefactthatseriescontainaninfinitenumberofterms.Theorderofthetermsinaseriescanmatter,sincetheRiemannseriestheoremstatesthat,byasuitablerearrangementofterms,aso-calledconditionallyconvergentseriesmaybemadetoconvergetoanydesiredvalue,ortodiverge.
Ifthedifferencebetweensuccessivetermsofaseriesisaconstant,thentheseriesissaidtobeanarithmeticseries.Aseriesforwhichtheratioofeachtwoconsecutivetermsak+1/akisaconstantfunctionofthesummationindexkiscalledageometricseries.
arithmeticprogressionAnarithmeticprogression,alsoknownasanarithmeticsequence,isasequence{a0+nd},n=0,1,2,…,suchthatthedifferencesbetweensuccessivetermsisaconstantd,wherea0anddarecalledinitialtermandcommondifferencerespectively.
geometricprogressionAlsoknownasageometricsequence,isasequence{an},n=0,1,2,…,suchthateachtermisgivenbyamultiplerofthepreviousone.Ifthemultiplierisr,thenthekthtermisgivenby
an=ran-1=r2an-2=a0rn
Takinga0=1givesthesimplespecialcasean=rn.
TEXTBThelimitofasequence
Themainquestionweareconcernedwithhereistodecidewhetherornotthetermsf(n)tendtoafinitelimitasnincreasesinfinitely.Totreatthisproblem,wemustextendthelimitconcepttosequence.Thisisdoneasfollows.
DEFINITIONAsequence{f(n)}issaidtohavelimitLif,foreverypositivenumber,thereisanotherpositivenumberN(whichmaydependon)suchthat
|f(n)-L|Inthiscase,wesaythesequence{f(n)}convergestoLandwewrite
limnf(n)=L,orf(n)Lasn.
Asequencewhichdoesnotconvergeiscalleddivergent.
Inthisdefinitionthefunctionvaluesf(n)andthelimitLmayberealorcomplexnumbers.IffandLarecomplex,wemaydecomposethemintotheirrealandimaginaryparts,sayf=u+ivandL=a+ib.Thenwehavef(n)-L=u(n)-a+i[v(n)-b].Theinequalities
|u(n)-a||f(n)-L|and|v(n)-b||f(n)-L|
showthattherelationf(n)Limpliesu(n)aandv(n)basn.Conversely,theinequality
|f(n)-L||u(n)-a|+|v(n)-b|
showsthatthetworelationsandu(n)aandv(n)bimpliesf(n)Lasn.Inotherwords,acomplex–valuedsequencefconvergesifandonlyifboththerealpartuandtheimaginarypartvconvergeseparately,inwhichcasewehave
limnf(n)=limnu(n)+ilimnv(n).
Itisclearthatanyfunctiondefinedforallpositiverealxmaybeusedtoconstructasequencebyrestrictingxtotakeonlyintegervalues.ThisexplainsthestronganalogybetweenthedefinitionjustgivenandtheoneinSection6.4formoregeneralfunctions.Theanalogycarriesovertoinfinitelimitsaswell,andweleaveitforthereadertodefinethesymbols
limnf(n)=+andlimnf(n)=-
aswasdoneinSection6.5whenfisreal-valued.Iffiscomplex,wewritef(n)asnif|f(n)|+.
Thephrase“convergentsequence”isusedonlyforasequencewhoselimitisfinite.Asequencewithaninfinitelimitissaidtodiverge.Thereare,ofcourse,divergentsequencesthatdonothaveinfinitelimits.Examplesaredefinedbythefollowingformulas:
f(n)=(-1)n,f(n)=sin(n/2),f(n)=(-1)n(1+1/n),f(n)=ei(n/2).
Thebasicrulesfordealingwithlimitsofsums,products,etc.,alsoholdforlimitsofconvergentsequences.Thereadershouldhavenodifficultyinformulatingthesetheoremsforhimself.TheirproofsaresomewhatsimilartothosegiveninSection3.5.
SUPPLEMENTFibonacciandFibonaccinumbers
Fibonacci,LeonardodaPisa(1170-1240)ItalianmathematicianwhowasthefirstgreatWesternmathematicianafterthedeclineofGreekscience.Thesonofamerchant,FibonaccidrewthemotivationtomathematicalinquiryfromhiscommercialtripstotheOrient.ItwassomewherebetweenBarbary(Maghreb)andConstantinople(nowIstanbul)thathegotacquaintedwiththeHindu-ArabicnumbersystemanddiscovereditsenormouspracticaladvantagescomparedtotheRomannumerals,whichwerestillcurrentinWesternEurope.
Performingeventhesimplestarithmeticaloperationswithanon-positionalnotationwasadifficultendeavor:
forthistaskthemerchantswereforcedtoresorttotheabacus,adevicewherethenumberswererepresentedbymovingballs.FibonacciexposedthenewalternatecomputingmethodbasedonwrittenalgorithmsratherthanoncountingobjectsinhisLiberAbaci,firstissuedin1202.
Thebookbeganwithapresentationofwhathecalledtheten"Indianfigures"(0,1,2,...,9).Itwasintendedasanalgebramanualforcommercialuse,andexplainedthearithmeticalrulesusingnumericalexamplesderived,forexample,frommeasureandcurrencyconversion,whichweretranslatedintoproportionsandsolvedbymultiplication(ruleofthree).Theso-calledFibonaccisequencearoseinthisbookfromaconcretequestionconcerningthegrowthofarabbitpopulation.Geometricprogressionsalsoappearedinproblemsrelatedtolegacyandinterest.
ThetreatisePracticaGeometriae,publishedin1225,ismainlyinspiredbyGreekmathematics;itcontainstheoremsfromEuclid'sElementsandalsoHeron'sformulafortheareaofatriangle.
FibonaccidistinguishedhimselfinthemathematicalcompetitionsproposedatthecourtofEmperorFrederickIIofHohenstaufen,KingoftheTwoSicilies,whohadhisroyalseatinPalermo.HisstrikingabilityinsolvingalgebraicequationsofhigherdegreeclearlyemergesfromhisworksentitledLiberQuadratorumandFlos,bothofwhichappearedin1225.Thefirstcontainsformulasandequationsinvolvingperfectsquares,thesecondowesitsfametotheirrationalsolutionofacubicequation,whichFibonaccideterminedwithanaccuracyof10-9.Mostofhissolvingtechniquesseemtobebasedonthealgebraicworksofal-Khwarizmi.
Al-Khwarizmi,MuhammedibnMusa(ca.780-ca.850)PersianmathematicianwhowroteatreatiseaboutalgebraicmethodswhoseArabictitlewasdistortedintothewordalgebra.HeusedtheHindunumberzero,whichwasthenintroducedtoEuropewhenAl-Khwarizmi'sworkwastranslatedbyFibonacci.
Fibonacciinitiatedthetraditionofthemaestrid'abaco,expertsinpracticalalgebraandarithmetic,whoflourishedinItalyduringthe14thcentury,andcanbeconsideredastheforerunnersofCardano,Tartaglia,andFerrari.
FibonaccisequenceTheFibonaccinumbersofthesequenceofnumbersFn,canbeviewedasaparticularcaseoftheFibonaccipolynomialsFn(x)withFn=Fn
(1).Theysatisfytherecurrencerelation,
Fn=Fn-2+Fn-1
forn=3,4,...,withF1=F2=1.ThefirstfewFibonaccinumbersforn=1,2,...are1,1,2,3,5,8,13,21,34,55,89,144,233,377,....
TheFibonaccinumbersgivethenumberofpairsofrabbitsnmonthsafterasinglepairbeginsbreeding(andnewlybornbunniesareassumedtobeginbreedingwhentheyaretwomonthsold),asfirstdescribedbyFibonacciinhisbookLiberAbaci.
TheratiosofsuccessiveFibonaccinumbers