数学专业英语7.docx

上传人:b****7 文档编号:9246418 上传时间:2023-02-03 格式:DOCX 页数:11 大小:71.20KB
下载 相关 举报
数学专业英语7.docx_第1页
第1页 / 共11页
数学专业英语7.docx_第2页
第2页 / 共11页
数学专业英语7.docx_第3页
第3页 / 共11页
数学专业英语7.docx_第4页
第4页 / 共11页
数学专业英语7.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

数学专业英语7.docx

《数学专业英语7.docx》由会员分享,可在线阅读,更多相关《数学专业英语7.docx(11页珍藏版)》请在冰豆网上搜索。

数学专业英语7.docx

数学专业英语7

 

MathematicalEnglish

Dr.XiaominZhang

Email:

zhangxiaomin@

§2.7SequencesandTheirLimits

TEXTAThedefinitionofsequences

IneverydayusageoftheEnglishlanguage,thewords“sequence”and“series”aresynonyms,andtheyareusedtosuggestasuccessionofthingsoreventsarrangedinsomeorder.Inmathematicsthesewordshavespecialtechnicalmeanings.Theword“sequence”isemployedasinthecommonuseofthetermtoconveytheideaofasetofthingsarrangedinorder,buttheword“series”isusedinasomewhatdifferentsense.Theconceptofasequencewillbediscussedinthissection,andserieswillbedefinedinSection11.

Ifforeverypositiveintegernthereisassociatedarealorcomplexnumberan,thentheorderedset

a1,a2,a3,…,an,…

issaidtodefineaninfinitesequence.Theimportantthinghereisthateachmemberofthesethasbeenlabeledwithanintegersothatwemayspeakofthefirstterma1,thesecondterma2,and,ingeneral,thenthterman.Eachtermanhasasuccessoran+1andhencethereisno”last”term.

Themostcommonexamplesofsequencescanbeconstructedifwegivesomeruleorformulafordescribingthenthterm.Thus,forexample,theformulaan=1/ndefinesasequencewhosefirstfivetermsare

1,1/2,1/3,1/4,1/5.

Sometimestwoormoreformulasmaybeemployedas,forexample,

a2n-1=1,a2n=2n2,

thefirstfewtermsinthiscasebeing

1,2,1,8,1,18,1,32,1.

Anothercommonwaytodefineasequenceisbyasetofinstructionswhichexplainshowtocarryonafteragivenstart.Thuswemayhave

a1=a2=1,an+1=an+an-1forn2.

ThisparticularruleisknownasarecursionformulaanditdefinesafamoussequencewhosetermsarecalledtheFibonaccinumbers.Thefirstfewtermsare

1,1,2,3,5,8,13,21,34

Inanysequencetheessentialthingisthattherebesomefunctionfdefinedonthepositiveintegerssuchthatf(n)isthenthtermofthesequenceforeachn=1,2,3,…..Infact,thisisprobablythemostconvenientwaytostateatechnicaldefinitionofsequence.

DEFINITIONAfunctionfwhosedomainisthesetofallpositiveintegers1,2,3,…iscalledaninfinitesequence.Thefunctionvaluef(n)iscalledthenthtermofthesequence.

Therangeofthefunction(thatis,thesetoffunctionvalues)isusuallydisplayedbywritingthetermsinorder,thus:

f

(1),f

(2),f(3),…,f(n),…

Forbrevity,thenotation{f(n)}isusedtodenotethesequencewhosenthtermisf(n).Veryoftenthedependenceonnisdenotedbyusingsubscripts,andwewritean,sn,xn,un,orsomethingsimilarinsteadoff(n).Unlessotherwisespecified,allsequences(suchasarithmeticprogressionandgeometricprogression)inthischapterareassumedtohaverealorcomplexterms.

 

Notations

SeriesAseriesisaninfiniteorderedsetoftermscombinedtogetherbytheadditionoperator.Theterminfiniteseriesissometimesusedtoemphasizethefactthatseriescontainaninfinitenumberofterms.Theorderofthetermsinaseriescanmatter,sincetheRiemannseriestheoremstatesthat,byasuitablerearrangementofterms,aso-calledconditionallyconvergentseriesmaybemadetoconvergetoanydesiredvalue,ortodiverge.

Ifthedifferencebetweensuccessivetermsofaseriesisaconstant,thentheseriesissaidtobeanarithmeticseries.Aseriesforwhichtheratioofeachtwoconsecutivetermsak+1/akisaconstantfunctionofthesummationindexkiscalledageometricseries.

arithmeticprogressionAnarithmeticprogression,alsoknownasanarithmeticsequence,isasequence{a0+nd},n=0,1,2,…,suchthatthedifferencesbetweensuccessivetermsisaconstantd,wherea0anddarecalledinitialtermandcommondifferencerespectively.

geometricprogressionAlsoknownasageometricsequence,isasequence{an},n=0,1,2,…,suchthateachtermisgivenbyamultiplerofthepreviousone.Ifthemultiplierisr,thenthekthtermisgivenby

an=ran-1=r2an-2=a0rn

Takinga0=1givesthesimplespecialcasean=rn.

TEXTBThelimitofasequence

Themainquestionweareconcernedwithhereistodecidewhetherornotthetermsf(n)tendtoafinitelimitasnincreasesinfinitely.Totreatthisproblem,wemustextendthelimitconcepttosequence.Thisisdoneasfollows.

DEFINITIONAsequence{f(n)}issaidtohavelimitLif,foreverypositivenumber,thereisanotherpositivenumberN(whichmaydependon)suchthat

|f(n)-L|

Inthiscase,wesaythesequence{f(n)}convergestoLandwewrite

limnf(n)=L,orf(n)Lasn.

Asequencewhichdoesnotconvergeiscalleddivergent.

Inthisdefinitionthefunctionvaluesf(n)andthelimitLmayberealorcomplexnumbers.IffandLarecomplex,wemaydecomposethemintotheirrealandimaginaryparts,sayf=u+ivandL=a+ib.Thenwehavef(n)-L=u(n)-a+i[v(n)-b].Theinequalities

|u(n)-a||f(n)-L|and|v(n)-b||f(n)-L|

showthattherelationf(n)Limpliesu(n)aandv(n)basn.Conversely,theinequality

|f(n)-L||u(n)-a|+|v(n)-b|

showsthatthetworelationsandu(n)aandv(n)bimpliesf(n)Lasn.Inotherwords,acomplex–valuedsequencefconvergesifandonlyifboththerealpartuandtheimaginarypartvconvergeseparately,inwhichcasewehave

limnf(n)=limnu(n)+ilimnv(n).

Itisclearthatanyfunctiondefinedforallpositiverealxmaybeusedtoconstructasequencebyrestrictingxtotakeonlyintegervalues.ThisexplainsthestronganalogybetweenthedefinitionjustgivenandtheoneinSection6.4formoregeneralfunctions.Theanalogycarriesovertoinfinitelimitsaswell,andweleaveitforthereadertodefinethesymbols

limnf(n)=+andlimnf(n)=-

aswasdoneinSection6.5whenfisreal-valued.Iffiscomplex,wewritef(n)asnif|f(n)|+.

Thephrase“convergentsequence”isusedonlyforasequencewhoselimitisfinite.Asequencewithaninfinitelimitissaidtodiverge.Thereare,ofcourse,divergentsequencesthatdonothaveinfinitelimits.Examplesaredefinedbythefollowingformulas:

f(n)=(-1)n,f(n)=sin(n/2),f(n)=(-1)n(1+1/n),f(n)=ei(n/2).

Thebasicrulesfordealingwithlimitsofsums,products,etc.,alsoholdforlimitsofconvergentsequences.Thereadershouldhavenodifficultyinformulatingthesetheoremsforhimself.TheirproofsaresomewhatsimilartothosegiveninSection3.5.

SUPPLEMENTFibonacciandFibonaccinumbers

Fibonacci,LeonardodaPisa(1170-1240)ItalianmathematicianwhowasthefirstgreatWesternmathematicianafterthedeclineofGreekscience.Thesonofamerchant,FibonaccidrewthemotivationtomathematicalinquiryfromhiscommercialtripstotheOrient.ItwassomewherebetweenBarbary(Maghreb)andConstantinople(nowIstanbul)thathegotacquaintedwiththeHindu-ArabicnumbersystemanddiscovereditsenormouspracticaladvantagescomparedtotheRomannumerals,whichwerestillcurrentinWesternEurope.

Performingeventhesimplestarithmeticaloperationswithanon-positionalnotationwasadifficultendeavor:

forthistaskthemerchantswereforcedtoresorttotheabacus,adevicewherethenumberswererepresentedbymovingballs.FibonacciexposedthenewalternatecomputingmethodbasedonwrittenalgorithmsratherthanoncountingobjectsinhisLiberAbaci,firstissuedin1202.

Thebookbeganwithapresentationofwhathecalledtheten"Indianfigures"(0,1,2,...,9).Itwasintendedasanalgebramanualforcommercialuse,andexplainedthearithmeticalrulesusingnumericalexamplesderived,forexample,frommeasureandcurrencyconversion,whichweretranslatedintoproportionsandsolvedbymultiplication(ruleofthree).Theso-calledFibonaccisequencearoseinthisbookfromaconcretequestionconcerningthegrowthofarabbitpopulation.Geometricprogressionsalsoappearedinproblemsrelatedtolegacyandinterest.

ThetreatisePracticaGeometriae,publishedin1225,ismainlyinspiredbyGreekmathematics;itcontainstheoremsfromEuclid'sElementsandalsoHeron'sformulafortheareaofatriangle.

FibonaccidistinguishedhimselfinthemathematicalcompetitionsproposedatthecourtofEmperorFrederickIIofHohenstaufen,KingoftheTwoSicilies,whohadhisroyalseatinPalermo.HisstrikingabilityinsolvingalgebraicequationsofhigherdegreeclearlyemergesfromhisworksentitledLiberQuadratorumandFlos,bothofwhichappearedin1225.Thefirstcontainsformulasandequationsinvolvingperfectsquares,thesecondowesitsfametotheirrationalsolutionofacubicequation,whichFibonaccideterminedwithanaccuracyof10-9.Mostofhissolvingtechniquesseemtobebasedonthealgebraicworksofal-Khwarizmi.

Al-Khwarizmi,MuhammedibnMusa(ca.780-ca.850)PersianmathematicianwhowroteatreatiseaboutalgebraicmethodswhoseArabictitlewasdistortedintothewordalgebra.HeusedtheHindunumberzero,whichwasthenintroducedtoEuropewhenAl-Khwarizmi'sworkwastranslatedbyFibonacci.

Fibonacciinitiatedthetraditionofthemaestrid'abaco,expertsinpracticalalgebraandarithmetic,whoflourishedinItalyduringthe14thcentury,andcanbeconsideredastheforerunnersofCardano,Tartaglia,andFerrari.

FibonaccisequenceTheFibonaccinumbersofthesequenceofnumbersFn,canbeviewedasaparticularcaseoftheFibonaccipolynomialsFn(x)withFn=Fn

(1).Theysatisfytherecurrencerelation,

Fn=Fn-2+Fn-1

forn=3,4,...,withF1=F2=1.ThefirstfewFibonaccinumbersforn=1,2,...are1,1,2,3,5,8,13,21,34,55,89,144,233,377,....

TheFibonaccinumbersgivethenumberofpairsofrabbitsnmonthsafterasinglepairbeginsbreeding(andnewlybornbunniesareassumedtobeginbreedingwhentheyaretwomonthsold),asfirstdescribedbyFibonacciinhisbookLiberAbaci.

TheratiosofsuccessiveFibonaccinumbers

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 化学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1