3.4fspecial函数
功能:
产生预定义滤波器
格式:
H=fspecial(type)
H=fspecial('gaussian',n,sigma) 高斯低通滤波器
H=fspecial('sobel') Sobel水平边缘增强滤波器
H=fspecial('prewitt') Prewitt水平边缘增强滤波器
H=fspecial('laplacian',alpha) 近似二维拉普拉斯运算滤波器
H=fspecial('log',n,sigma) 高斯拉普拉斯(LoG)运算滤波器
H=fspecial('average',n) 均值滤波器
H=fspecial('unsharp',alpha) 模糊对比增强滤波器
说明:
对于形式H=fspecial(type),fspecial函数产生一个由type指定的二维滤波器H,返回的H常与其它滤波器搭配使用。
4.彩色增强的Matlab实现
4.1imfilter函数
功能:
真彩色增强
格式:
B=imfilter(A,h)
说明:
将原始图像A按指定的滤波器h进行滤波增强处理,增强后的图像B与A的尺寸和类型相同。
图像的变换
1.离散傅立叶变换的Matlab实现
Matlab函数fft、fft2和fftn分别可以实现一维、二维和N维DFT算法;而函数ifft、ifft2和ifftn则用来计算反DFT。
这些函数的调用格式如下:
A=fft(X,N,DIM)
其中,X表示输入图像;N表示采样间隔点,如果X小于该数值,那么Matlab将会对X进行零填充,否则将进行截取,使之长度为N;DIM表示要进行离散傅立叶变换。
A=fft2(X,MROWS,NCOLS)
其中,MROWS和NCOLS指定对X进行零填充后的X大小。
A=fftn(X,SIZE)
其中,SIZE是一个向量,它们每一个元素都将指定X相应维进行零填充后的长度。
函数ifft、ifft2和ifftn的调用格式于对应的离散傅立叶变换函数一致。
例子:
图像的二维傅立叶频谱
%读入原始图像
I=imread('lena.bmp');
imshow(I)
%求离散傅立叶频谱
J=fftshift(fft2(I));
figure;
imshow(log(abs(J)),[8,10])
2.离散余弦变换的Matlab实现
2.1. dct2函数
功能:
二维DCT变换
格式:
B=dct2(A)
B=dct2(A,m,n)
B=dct2(A,[m,n])
说明:
B=dct2(A)计算A的DCT变换B,A与B的大小相同;B=dct2(A,m,n)和B=dct2(A,[m,n])通过对A补0或剪裁,使B的大小为m×n。
2.2. dict2函数
功能:
DCT反变换
格式:
B=idct2(A)
B=idct2(A,m,n)
B=idct2(A,[m,n])
说明:
B=idct2(A)计算A的DCT反变换B,A与B的大小相同;B=idct2(A,m,n)和B=idct2(A,[m,n])通过对A补0或剪裁,使B的大小为m×n。
2.3. dctmtx函数
功能:
计算DCT变换矩阵
格式:
D=dctmtx(n)
说明:
D=dctmtx(n)返回一个n×n的DCT变换矩阵,输出矩阵D为double类型。
3. 图像小波变换的Matlab实现
3.1 一维小波变换的Matlab实现
(1)dwt函数
功能:
一维离散小波变换
格式:
[cA,cD]=dwt(X,'wname')
[cA,cD]=dwt(X,Lo_D,Hi_D)
说明:
[cA,cD]=dwt(X,'wname')使用指定的小波基函数'wname'对信号X进行分解,cA、cD分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D)使用指定的滤波器组Lo_D、Hi_D对信号进行分解。
(2)idwt函数
功能:
一维离散小波反变换
格式:
X=idwt(cA,cD,'wname')
X=idwt(cA,cD,Lo_R,Hi_R)
X=idwt(cA,cD,'wname',L)
X=idwt(cA,cD,Lo_R,Hi_R,L)
说明:
X=idwt(cA,cD,'wname')由近似分量cA和细节分量cD经小波反变换重构原始信号X。
'wname'为所选的小波函数
X=idwt(cA,cD,Lo_R,Hi_R)用指定的重构滤波器Lo_R和Hi_R经小波反变换重构原始信号X。
X=idwt(cA,cD,'wname',L)和X=idwt(cA,cD,Lo_R,Hi_R,L)指定返回信号X中心附近的L个点。
3.2 二维小波变换的Matlab实现
二维小波变换的函数
-------------------------------------------------
函数名 函数功能
---------------------------------------------------
dwt2 二维离散小波变换
wavedec2 二维信号的多层小波分解
idwt2 二维离散小波反变换
waverec2 二维信号的多层小波重构
wrcoef2 由多层小波分解重构某一层的分解信号
upcoef2 由多层小波分解重构近似分量或细节分量
detcoef2 提取二维信号小波分解的细节分量
appcoef2 提取二维信号小波分解的近似分量
upwlev2 二维小波分解的单层重构
dwtpet2 二维周期小波变换
idwtper2 二维周期小波反变换
-------------------------------------------------------------
(1)wcodemat函数
功能:
对数据矩阵进行伪彩色编码
格式:
Y=wcodemat(X,NB,OPT,ABSOL)
Y=wcodemat(X,NB,OPT)
Y=wcodemat(X,NB)
Y=wcodemat(X)
说明:
Y=wcodemat(X,NB,OPT,ABSOL)返回数据矩阵X的编码矩阵Y;NB伪编码的最大值,即编码范围为0~NB,缺省值NB=16;
OPT指定了编码的方式(缺省值为'mat'),即:
OPT='row',按行编码
OPT='col',按列编码
OPT='mat',按整个矩阵编码
ABSOL是函数的控制参数(缺省值为'1'),即:
ABSOL=0时,返回编码矩阵
ABSOL=1时,返回数据矩阵的绝对值ABS(X)
(2)dwt2函数
功能:
二维离散小波变换
格式:
[cA,cH,cV,cD]=dwt2(X,'wname')
[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)
说明:
[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname'对二维信号X进行二维离散小波变幻;cA,cH,cV,cD分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)使用指定的分解低通和高通滤波器Lo_D和Hi_D分解信号X。
(3)wavedec2函数
功能:
二维信号的多层小波分解
格式:
[C,S]=wavedec2(X,N,'wname')
[C,S]=wavedec2(X,N,Lo_D,Hi_D)
说明:
[C,S]=wavedec2(X,N,'wname')使用小波基函数'wname'对二维信号X进行N层分解;[C,S]=wavedec2(X,N,Lo_D,Hi_D)使用指定的分解低通和高通滤波器Lo_D和Hi_D分解信号X。
(4)idwt2函数
功能:
二维离散小波反变换
格式:
X=idwt2(cA,cH,cV,cD,'wname')
X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R)
X=idwt2(cA,cH,cV,cD,'wname',S)
X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)
说明:
X=idwt2(cA,cH,cV,cD,'wname')由信号小波分解的近似信号cA和细节信号cH、cH、cV、cD经小波反变换重构原信号X;X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R)使用指定的重构低通和高通滤波器Lo_R和Hi_R重构原信号X;X=idwt2(cA,cH,cV,cD,'wname',S)和X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)返回中心附近的S个数据点。
(5)waverec2函数
说明:
二维信号的多层小波重构
格式:
X=waverec2(C,S,'wname')
X=waverec2(C,S,Lo_R,Hi_R)
说明:
X=waverec2(C,S,'wname')由多层二维小波分解的结果C、S重构原始信号X,'wname'为使用的小波基函数;X=waverec2(C,S,Lo_R,Hi_R)使用重构低通和高通滤波器Lo_R和Hi_R重构原信号。
图像处理工具箱
1.图像和图像数据
缺省情况下,MATLAB将图像中的数据存储为双精度类型(double),64位浮点
数,所需存储量很大;MATLAB还支持另一种类型无符号整型(uint8),即图像矩
阵中每个数据占用1个字节。
在使用MATLAB工具箱时,一定要注意函数所要求的参数类型。
另外,uint8
与double两种类型数据的值域不同,编程需注意值域转换。
从uint8到double的转换
---------------------------------------------
图像类型 MATLAB语句
---------------------------------------------
索引色 B=double(A)+1
索引色或真彩色 B=double(A)/255
二值图像 B=double(A)
---------------------------------------------
从double到uint8的转换
---------------------------------------------
图像类型 MATLAB语句
---------------------------------------------
索引色 B=uint8(round(A-1))
索引色或真彩色 B=uint8(round(A*255))
二值图像 B=logical(uint8(round(A)))
---------------------------------------------
2.图像处理工具箱所支持的图像类型
2.1真彩色图像
R、G、B三个分量表示一个像素的颜色。
如果要读取图像中(100,50)处的像素值,
可查看三元数据(100,50,1:
3)。
真彩色图像可用双精度存储,亮度值范围是[0,1];比较符合习惯的存储方法是用无符号整型存储,亮度值范围[0,255]
2.2索引色图像
包含两个结构,一个是调色板,另一个是图像数据矩阵。
调色板是一个有3列和若干行的色彩映象矩阵,矩阵每行代表一种颜色,3列分别代表红、绿、蓝色强度的双精度数。
注意:
MATLAB中调色板色彩强度[0,1],0代表最暗,1代表最亮。
常用颜色的RGB值
--------------------------------------------
颜色 R G B 颜色 R G B
--------------------------------------------
黑 0 0 1 洋红 1 0 1
白 1 1 1 青蓝 0 1 1
红 1 0 0 天蓝 0.67 0 1
绿 0 1 0 橘黄 1 0.5 0
蓝 0 0 1 深红 0.5 0 0
黄 1 1 0 灰 0.50.50.5
--------------------------------------------
产生标准调色板的函数
-------------------------------------------------
函数名 调色板
-------------------------------------------------
Hsv 色彩饱和度,以红色开始,并以红色结束
Hot 黑色-红色-黄色-白色
Cool 青蓝和洋红的色度
Pink 粉红的色度
Gray 线型灰度
Bone 带蓝色的灰度
Jet Hsv的一种变形,以蓝色开始,以蓝色结束
Copper 线型铜色度
Prim 三棱镜,交替为红、橘黄、黄、绿和天蓝
Flag 交替为红、白、蓝和黑
--------------------------------------------------
缺省情况下,调用上述函数灰产生一个64×3的调色板,用户也可指定调色板大小。
索引色图像数据也有double和uint8两种类型。
当图像数据为double类型时,值1代表调色板中的第1行,值2代表第2行……
如果图像数据为uint8类型,0代表调色板的第一行,,值1代表第2行……
2.3灰度图像
存储灰度图像只需要一个数据矩阵。
数据类型可以是double,[0,1];也可以是uint8,[0,255]
2.4二值图像
二值图像只需一个数据矩阵,每个像素只有两个灰度值,可以采用uint8或double类型存储。
MATLAB工具箱中以二值图像作为返回结果的函数都使用uint8类型。
2.5图像序列
MATLAB工具箱支持将多帧图像连接成图像序列。
图像序列是一个4维数组,图像帧的序号在图像的长、宽、颜色深度之后构成第4维。
分散的图像也可以合并成图像序列,前提是各图像尺寸必须相同,若是索引色图像,
调色板也必须相同。
可参考cat()函数 A=cat(4,A1,A2,A3,A4,A5)
3.MATLAB图像类型转换
图像类型转换函数
---------------------------------------------------------------------------
函数名 函数功能
---------------------------------------------------------------------------
dither 图像抖动,将灰度图变成二值图,或将真彩色图像抖动