反应釜毕业设计外文翻译.docx

上传人:b****6 文档编号:9188664 上传时间:2023-02-03 格式:DOCX 页数:23 大小:1.34MB
下载 相关 举报
反应釜毕业设计外文翻译.docx_第1页
第1页 / 共23页
反应釜毕业设计外文翻译.docx_第2页
第2页 / 共23页
反应釜毕业设计外文翻译.docx_第3页
第3页 / 共23页
反应釜毕业设计外文翻译.docx_第4页
第4页 / 共23页
反应釜毕业设计外文翻译.docx_第5页
第5页 / 共23页
点击查看更多>>
下载资源
资源描述

反应釜毕业设计外文翻译.docx

《反应釜毕业设计外文翻译.docx》由会员分享,可在线阅读,更多相关《反应釜毕业设计外文翻译.docx(23页珍藏版)》请在冰豆网上搜索。

反应釜毕业设计外文翻译.docx

反应釜毕业设计外文翻译

WeldingSimulationofCastAluminiumA356

X-T.Pham*,P.GougeonandF-O.Gagnon

AluminiumTechnologyCentre,NationalResearchCouncilCanadaChicoutimi,Quebec,Canada

Abstract

Weldingofcastaluminiumhollowpartsisanewpromisingtechnicaltrendforstructuralassemblies.However,biggapbetweencomponents,weldporosity,largedistortionandriskforhotcrackingneedtobedealtwith.Inthispaper,theMIGweldingofaluminiumA356castsquaretubesisstudied.Thedistortionoftheweldedtubeswaspredictedbynumericalsimulations.Agoodagreementbetweenexperimentalandnumericalresultswasobtained.

Introduction

Aluminiumstructuresbecomemoreandmorepopularinindustriesthankstotheirlightweights,especiallyintheautomotivemanufacturingindustry.Moreover,weldingofcastaluminiumhollowpartsisanewpromisingtechnicaltrendforstructuralassemblies[1-3].However,itmaybeverychallengingduetomanyproblemssuchasbiggapbetweencomponents,weldporosity,largedistortionandriskforhotcracking[4,5].Duetolocalheating,complexthermalstressesoccurduringwelding;residualstressanddistortionresultafterwelding.Inthispaper,thealuminiumA356casttubeMIGweldingisstudied.ThesoftwareSysweld[6]wasusedforweldingsimulations.Theobjectiveistovalidatethecapabilityofthissoftwareinpredictingthedistortionoftheweldedtubesinthepresenceoflargegaps.Inthiswork,theporosityofweldswascheckedafterweldingusingtheX-raytechnique.Theheatsourceparameterswereidentifiedbasedontheweldcross-sectionsandweldingparameters.Full3Dthermalmetallurgicalmechanicalsimulationswereperformed.ThedistortionspredictedbythenumericalsimulationswerecomparedtoexperimentalresultsmeasuredafterweldingbyaCMMmachine.

Experiments

Experimentalsetup

TwosquaretubesaremadeofA356bysandcastingandthenmachined.TheyareassembledbyfourMIGwelds,namedW1toW4.TheirdimensionsandtheweldingconfigurationaredepictedinFigure1.Bothsmall(inner)andlarge(outer)tubesarewellpositionedonafixtureusingv-blocksasshowninFigure2.Thedimensionsofthetubesmakeaperipheralgapof1mmbetweenthem.Thisfixtureisfixedonapositionerthatallowstheweldingprocesstobecarriedoutalwaysinthehorizontalposition.Thelengthofeachweldisof35mm.TheFroniusweldinghead,whichismountedonaMotomanrobot,wasusedfortheMIGweldingprocess.Table1indicatestheparametersoftheweldingprocessforthisweldingconfiguration.

Table1:

MIGweldingparameters.

Voltage

Amperage

Speed

Thick1

Thick2

Gap

(V)

(A)

(m/min.)

(mm)

(mm)

(mm)

23

260

1.25

4

4

1

a)

b)

Figure1:

Tubeweldingconfiguration:

a)cross-sectionview,b)tubedimensions

 

Figure2:

Experimentalsetupfortubewelding

Testing

TheporosityofweldswasobservedbeforeandafterweldingusingtheX-raytechniquetocheckthequalityoftheseweldsaccordingtothestandardASTME155.ThewholeweldedtubeswerethentestedbytractiononaMTStestingmachine.ThefinaldimensionsoftheweldedtubesaremeasuredonaCMMmachineatmanypointsonthetubes.Thedistortionoftheweldedtubesisdeterminedbycomparingthefinalpositionswiththeinitialpositionsofthetubes.

Numericalanalysis

InSysweld,aweldinganalysisisperformedbasedonaweak-couplingformulationbetweentheheattransferandmechanicalproblems.Onlythethermalhistorywillaffectonthemechanicalproperties,butnotinreversedirection.Therefore,athermalmetallurgicalmechanicalanalysisisdividedintotwosteps.Thefirststepisathermalmetallurgicalanalysis,inwhichtheheattransferredfromtheweldingsourcemakesphasechangesduringtheweldingprocess.Theresultsoftemperatureandphasechangesfromthefirststeparethenusedasinputforthesecondanalysis.Itisapurethermo-elasto-plasticsimulation[6].

Heatsourcemodelidentification

Beforerunningaweldingsimulation,itisnecessarytodeterminetheparametersoftheheatsourcemodel.Thisiscalledheatsourcefitting.Actually,itisathermalsimulationusingthisheatsourcemodelinthesteadystate,whichiscombinedwithanoptimizationtooltoobtaintheparametersoftheheatsource.Figure3presentstheformofa3DconicalheatsourceofwhichtheenergydistributionisdescribedinEq

(1)asfollows:

F=Q0exp(-r²/r0²)

(1)

inwhichQ0denotesthepowerdensity;andr,r0aredefinedby

r²=(x-x0)²+(x-x0-vt)²

(2)

and

r0=re-(re-ri)(ze-z+z0)/(ze-zi)(3)

where(x0,y0,z0)istheoriginofthelocalcoordinatesystemoftheheatsource;reandritheradiusoftheheatsourceatthepositionszeandzi,respectively;vtheweldingspeedandtthetime.

Inthisstudy,ametallographiccross-sectionhasbeenusedtoidentifytheheatsourceparametersasshowninFigure4.Theuseofa3Dconicalheatsourcefitsverywelltheweldcross-section.Themeshsizeinthecross-sectionisaround0.5mmforthiscase.Thefineristhemesh,themoreaccurateistheshapeofthemeltingpool,butthelongeristhesimulation.

Figure3:

3Dconicalheatsource(Sysweld).

a)

b)

Figure4:

(a)Metallographiccross-section,(b)Meltingpoolcross-section.

Analysismodel

ThemeshofthetubeswascreatedinHypermesh7.0.Sysweld2007hasbeenusedassolverandpre/postprocessor.Afull3Dthermalmetallurgicalmechanicalanalysiswithbrickandprismelements.TwoweldingsequenceshavebeendonesuchasW1/W2/W3/W4andW1/W3/W2/W4.Thetubesareclampedusingfourv-blocksduringthewelding,twoforeachtube.Inthesimulations,thepositionswherethetubesareincontactagainstthesurfacesofthev-blocksareconsideredasfixedconditions(i.e.Ux=Uy=Uz=0).Inthereleasephase,thetubesarefreefromthev-blocks.

Results

Thedistortionoftheweldedtubeismeasuredwhenitisreleasedfromtheconstraints.Thedistortionisdeterminedbymeasuringthedisplacementofthesmalltubeonthetopandlateralsurfacesalongthecentrelineofthetube.Thesemeasuresarerelativetothelargetube.Figures5a-bdepictthedistortionpredictedbythenumericalsimulationsofthesequenceW1/W2/W3/W4andW1/W3/2/W4,respectively.GoodagreementsbetweenexperimentalandnumericalresultswereobtainedinthetwoweldingsequencesasindicatedinTables2-3,inboththedistortiontendencyanddistortionrangeoftheprocessvariation.

a)

b)

Figure5:

Tubedistortion(NormU):

(a)SequenceW1/W2/W3/W4,(b)SequenceW1/W3/W2/W4.

Table2:

Distortionresultcomparison(weldingsequenceW1/W2/W3/W4)

Displacements(mm)

Uy

Uz

Experimrntal

From-0.4to-0.59

From-0.35to-0.51

3Dsimulation

-0.4

-0.51

Table3:

Distortionresultcomparison(weldingsequenceW1/W3/W2/W4)

Displacements(mm)

Uy

Uz

Experimrntal

From-0.07to-0.11

From-0.12to-0.21

3Dsimulation

-0.05

-0.26

a)

b)

Figure7:

StateofstressesSxy(a)Clamped,(b)Released.(Red=positive,Blue=negative)

a)

b)

Figure8:

StateofstressesSxz(a)Clamped,(b)Released.(Red=positive,Blue=negative)

Figures6-8showsthestateofthestressesoftheweldedtubesatroomtemperatureforthesequenceW1/W2/W3/W4afterweldingwhenclampledandreleasedfromconstraints(xisthedirectionalongtheaxeoftheweldedtube).Toshowhowtheweldedtubeisdistorted,positive-negativevaluesareusedinsteadofthetruevaluesofstresses.Thedistortionoftheweldedtubecanbeexplainedasthenewequilibriumpositionduetotheresidualstresseswhenthereisnoexternalload.Itisremarkedthatinthepresenceoflargegaps,thedistortionoftheweldedtubeisverylikelyintherotationalmodearoundlocalwelds.

Conclusions

TheMIGweldingisverygoodforassemblingaluminiumcasttubes(hollowparts)inthepresenceoflargegaps.

The3DthermalmetallurgicalmechanicalsimulationofthecasttubeweldingusingSysweldhasbeenvalidated.Averygoodagreementbetweennumericalandexperimentalresultswasobtainedforboththedistortiontendencyanddistortionrange.

Theweldingsequencehasamajorinfluenceonthedistortionoftheweldedstructure.Itturnsoutthattheoptimizationoftheweldingsequencesforareasonabledistortionofaweldedstructurewithalargenumberofweldsbecomesveryimportant.

Acknowledgments

TheauthorswouldliketothankgratefullyRioTintoAlcanandGeneralMotorforfinancialandtechnicalsupports,particularlyMartinFortierandPei-ChungWang.Also,theauthorsaregratefultoWeldingTeamatATC(AudreyBoily,MartinLarouche,FrançoisNadeauandMarioPatry)forexperimentalworks.

References

1.K-H.VonZengen,Aluminiuminfuturecars–Achallengeformaterialsscience,MaterialsScienceForum,519-521(Part2),1201-1208(2006).

2.S.WiesnerS.,M.RethmeierandH.Wohlfart,MIGandlaserweldingofaluminiumalloypressurediecastpartswithwroughtprofiles,WeldingInternational,19

(2),130-133(2005).

3.R.Akhter,L.Ivanchev,C.V.Rooyen,P.KazadiandH.P.Burger,LaserweldingofSSMCastA356aluminiumalloyprocessedwithCSIR-Rheotechnology,SolidStatePhenomena,116-117,173-176(2006).

4.J.F.Lancaster,Metallurgyofwelding,AbingtonPublishing(1999).

5.Φ.Grong,Metallurgicalmodellingofwelding,Theinstituteofmaterials(1997).

6.Sysweld,Sysweldreferencemanual,ESIGroup(2005).

 

译文

铸造A356铝合金的焊接模拟

X-T.Pham*,P.GougeonandF-O.Gagnon

AluminiumTechnologyCentre,NationalResearchCouncilCanadaChicoutimi,Quebec,Canada

摘要:

空心铝铸造件的焊接是一个很有前途的新结构组件技术的趋势。

然而,组件之间的差距较大,焊接孔隙度,大变形和热裂需要处理的风险。

在这篇文章中,对铸造A356铝合金的方管的MIG焊接进行了研究。

并对焊接管弯曲变形进行了数值模拟预测。

实验结果和数值模拟结果的相似度很高。

1前言:

由于铝合金结构自身的重量轻,所以它变得越来越流行,尤其是在汽车制造业。

此外,空心铝铸造件的焊接是一种新的有前途的结构

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 农学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1