万向联轴器工艺规程设计.docx

上传人:b****3 文档编号:913718 上传时间:2022-10-13 格式:DOCX 页数:35 大小:1.44MB
下载 相关 举报
万向联轴器工艺规程设计.docx_第1页
第1页 / 共35页
万向联轴器工艺规程设计.docx_第2页
第2页 / 共35页
万向联轴器工艺规程设计.docx_第3页
第3页 / 共35页
万向联轴器工艺规程设计.docx_第4页
第4页 / 共35页
万向联轴器工艺规程设计.docx_第5页
第5页 / 共35页
点击查看更多>>
下载资源
资源描述

万向联轴器工艺规程设计.docx

《万向联轴器工艺规程设计.docx》由会员分享,可在线阅读,更多相关《万向联轴器工艺规程设计.docx(35页珍藏版)》请在冰豆网上搜索。

万向联轴器工艺规程设计.docx

万向联轴器工艺规程设计

第一章绪论

1.1前言

UOE钢管应用范围十分广阔,不仅应用于铺设长距离高压输油气管线,并且已经扩展到以气体,液体作为推动力输送矿石、谷物、石油、煤炭。

在工程建设中用于海底隧道,海底打桩,防坡堤及海上采油平台等,在其它领域还用于高压容器,机架外壳等。

市场与效益分析(ANALYSISOFMARKETANDRETURNS)

国内市场分析:

UOE钢管的市场十分广阔,据国家“十一五”规划,到2010年我国新建原油、天然气、成品油、煤浆管道总长度近40000公里,共需UOE钢管约3000万吨。

我公司已先后在西气东输支线、内蒙长呼天然气输送管线、长包管线、靖边扩能管线、惠州壳牌石化工程部分管线、胜利油田石油输送管线、东海大桥等重大管线工程中中标,共销售UOE钢管5万吨,实现销售额3.5亿元。

国际市场分析:

国际上,俄罗斯、土库曼斯坦及中东地区国家进入中国的油气资源将通过海底管道输送到韩国、日本等对能源需求量较大的国家,预计全球总需求量将在16000万吨左右,可以说市场十分广阔。

目前国际上在建的几条大型天然气管线项目中,除采用了德国和日本的UOE钢管外,也大量采用了我们公司的产品。

如伊朗国家天然气(NIGC)主持修建的4000多公里的天然气管线的干线管中,我们公司作为国内唯一通过资格预审的投标人,最终力挫日本钢管厂与德国欧洲钢管公司一举中标。

目前我们已经发出近7.5万吨钢管,并一次性全部通过国际监理机构SGS的验收,获得了NIGC的大力好评,在行业内稳稳占据了重要一席。

此前我们也陆续往巴基斯坦、阿联酋、加拿大和美国出口了大量钢管,实现出口总额近6000万美元。

UOE钢管轧制工艺流程图如图1-1、1-2、1-3所示,轧制中连轧管机和脱管机中的主动夹棍的的运动均由电机、联轴器、变速箱、齿轮箱和十字轴万向联轴器驱动,如图1-4所示.

图1-1UOE钢管轧制工艺流程示意图

图1-2UOE连轧管机示意图

图1-3夹棍的工作示意图

图1-4主动夹棍的传动系统

十字轴式万向联轴器是一种最常用的联轴器。

利用其结构的特点能使不在同一轴线或轴线折角较大或轴向移动较大的两轴等角速连续回转,并可靠地传递转矩和运动。

能广泛应用于冶金、起重、工程运输、矿山、石油、船舶、煤炭、橡胶、造纸机械及其它重机行业的机械轴系中传递转矩。

联轴器是联接原动机与工作机的重要部件,它的损坏将导致机器的停顿,甚至波及到整条作业线,因此对其可靠性的要求相当高。

但是,十字轴式万向联轴器所处的条件又往往是很苛刻的,例如:

在轧机传动中,由于所联接的轧辊的直径有一定限制,因而联轴器的回转直径也相应受到限制,轧制过程中的实际转矩往往接近联轴器的疲劳转矩,稍有不当还会超出,这种过载现象如频繁出现,就会大大降低疲劳寿命,从而使之过早失效或损坏。

另外,十字轴式万向联轴器空间几何位置的要求也较高,如有不当,就会出现附加转矩,这些附加转矩也会降低其寿命并影响其传输效率。

对于大型联轴器来说,由于维修技术不到位和平衡系统调整不当,也会带来相当于转矩级别的附加载荷或者更大,有的甚至使十字轴折断。

因此,对于这样一个核心设备,要有周全的技术控制,以确保其寿命。

1.2万向联轴器作用

用来联接不同机构中的两根轴(主动轴和从动轴)使之共同旋转以传递扭矩的机械零件。

在高速重载的动力传动中,有些联轴器还有缓冲、减振和提高轴系动态性能的作用。

联轴器由两半部分组成,分别与主动轴和从动轴联接。

一般动力机大都借助于联轴器与工作机相联接。

1.3万向联轴器的种类及特点

1.3.1特点:

万向联轴器最大的特点是具有较大的角向补偿能力,结构紧凑,传动效率高,不同结构型式万向联轴器两轴线夹角不相同,一般≤5°-45°之间。

万向联轴器利用其机构的特点,使两轴不在同一轴线,存在轴线夹角的情况下能实现所联接的两轴连续回转,并可靠地传递转矩和运动。

1.3.2种类:

万向联轴器有多种结构型式,例如:

十字轴式、球笼式、球叉式、凸块式、球销式、球铰式、球铰柱塞式、三销式、三叉杆式、三球销式、铰杆式等,最常用的为十字轴式,其次为球笼龙,在实际应用中根据所传递转矩大小分为重型、中型、轻型和小型。

1.3.3结构:

(1):

十字轴式

如图1-1所示,它由两个叉形接头1、3,一个中间联接件2和轴销4(包括销套及铆钉)、5所组成;轴销4与5互相垂直配置并分别把两个叉形接头与中间件2联接起来。

这样,就构成了一个可动的联接。

这种联轴器可以允许两轴间有较大的夹角(夹角α最大可达35°~45°),而且在机器运转时,夹角发生改

图1-1十字轴式

变仍可正常传动;但当过大时,传动效率会显著降低。

这种联轴器的缺点是:

当主动轴角速度ω1为常数时,从动轴的角速度并不是常数,而是在一定范围内(ω1cosα≤ω3≤ω1/cosα)变化,因而在传动中将产生附加动载荷。

为了改善这种情况,常将十字轴式万向联轴器成对使用(右图<十字轴式万向联轴器b>),但应注意安装时必须保证轴、轴与中间轴之间的夹角相等,并且中间轴的两端的叉形接头应在同一平面内(右图<双万向联轴器>)。

只有这种双万向联轴器才可以得到ω3=ω1。

(2):

球笼式

球笼式万向联轴器是通过球笼外环和星形内环分别与主、从动轴相联,传力钢球的中心都位于通过联轴器中心的平面内,并装在由球形外环和星形内环外球面凹槽组成的滚道中,两个球面的中心与万向联轴器的中心重合,为了保证所有钢球中心都在两轴轴线间夹角的平分面上,钢球装于球笼内,从而保证了联轴器主、从动轴之间的夹角变化时,传力点能始终位于夹角的平分线上,因此,球笼式万向联轴器主、从动轴间的传速得以保持同步。

传动方式可采用滑动传动,也可采用滚动传动。

采用滑动传动时,为了缓冲和减振,在球臂和传力臂上安装有聚合物缓冲套3。

当采用滚动传动时,则在球臂和传力臂上将原装有的缓冲套3改装为滚动件,同时,在球头和臼座之间亦将原装有的缓冲垫改为滚动件,以适应刚性传动的需要。

传动的通用部件,而且也可用于高速传动。

该万向联轴器适用范围广泛,尤其是适合于大倾角、径向尺寸受限制工况条件的轴系传动。

图1-2球笼式万向联轴器

图1-3球笼式万向联轴器结构示意图

(3):

球铰式

图1-5球铰式

1.4课题目的和要求:

1.4.1课题

设计用于宝钢UOE焊管线上下夹送辊的SWC250整体叉头十字轴万向联轴器。

要求根据该产品的特点,完成该产品的零件设计计算和机械结构CAD等任务。

1.4.2设计技术要求与数据

(1)设计的数据

1.公称扭矩31.5KN/m,疲劳转矩为16KN/m,轴线折角≤10°。

2.连接法兰的回转直径为250mm,DH短伸缩焊接式。

3.主电机功率250KW,送辊转速n=80rpm,送辊最小直径Dmin=400mm。

4.使用寿命5000h.

(2)设计的技术要求

1.主要适用于低速、重载工况条件。

2.为保证主、从动端的同步性,十字轴式万向联轴器采用双联式。

 

第二章万向联轴器的运动学分析和动力学分析

2.1十字万向联轴器的结构组成及受力分析

2.1.1十字万向联轴器结构总成

十字轴式万向联轴器主要由法兰叉头、十字轴总成、焊接叉头花键轴和花键轴套组成,如下图所示。

图2-1十字轴式万向联轴器

1法兰叉头2十字轴总成3花键轴4花键套5焊接叉头

2.1.2十字万向联轴器受力分析      

 

(1)十字轴的受力分析在十字轴的每个轴头上,轴承座给十字轴的压力由滚针轴承承担,假设该力在沿轴向滚子有效接触长度上均匀分布,则在十字轴断面内,只有受力的半圈轴承滚动体承受载荷,而这半圈内各滚动体承受载荷的大小是不同的,中间的滚动体受力最大,其他的沿两侧逐渐减小,处在最两侧的滚动体受力为零(轴承座内孔的加工精度对此也影响较大)。

而十字轴的受力大小则是半圈滚动体所受力的合力。

由此,十字轴的受力可简化为大小相同、方向相反的两对力偶。

这两对力偶处于主传动与被传动轴所决定的平面内,如不计两轴的倾角,则构成两力偶的力均在十字轴轴线平面内。

通过在强大的实体设计及分析软件SOLIDWORKS中建立十字轴的实体模型,将实际中十字轴受到的力与力矩作用于十字轴4个轴头受力的半圆柱面上,则可显示整个十字轴的应力值分布、各部位受力后的位移以及及强度安全系数等。

分析表明,十字轴头的截面积剪切应力与扭矩完全满足要求,但是轴头根部两过渡圆角的应力值是受力中的最大值(如图,R1、R2),应力梯度非常大,尤其是圆角较小的R1处更是如此,应力集中较为明显,在交变载荷下极易产生疲劳,是裂纹和断裂产生的根源。

(2)法兰叉架及轴承座的受力分析法兰叉架轴承座可看作是悬臂梁结构,轴承座根部一侧受拉应力,另一侧受压应力,其叉架根部不仅受到大小为F的力作用,还受到力矩为F×H的作用。

在此力与力矩的交变作用下,叉架轴承座与法兰连接的根部便是疲劳产生与断裂的根源。

由此,轴承座的中心高度H和轴承座根部过渡圆弧大小的结构设计对法兰叉架的强度影响很大。

轴承座内孔圆周表面一侧承受压应力,一侧则不受力。

轴承座受的力通过连接轴承座的螺栓,使得螺栓承受拉应力,因此,螺栓的预紧力就显得尤为重要。

螺栓的预紧力使得上轴承座与下轴承座接触面内产生接触压力,随着预紧力的增大,接触压力也上升。

这种预紧力的变化随传递扭矩的增大而增大。

如果预紧力较小,而传递扭矩过大,则受力侧的上下轴承座间压力可能下降为零,这时上下轴承座间将出现间隙,而扭矩减小时,间隙会消失,从而产生冲击,而此时为保证传动,与其对称的另一轴承座将会受到很大的力而率先导致疲劳断裂,这对十字轴的使用寿命是极为不利的。

另一方面,如果螺栓的预紧量太大,螺栓的拉应力也随着增大,螺栓极易被拉断。

所以螺栓的预紧量应根据不同的扭矩确定合适的一个范围,保证上下轴承座的完全接触状态。

2.2十字轴式万向联轴器运动分析

2.2.1十字轴式单万向联轴器的运动分析

字轴式万向联轴器的结构原理如图所示,主、从动轴上的轴叉1、3与中间的十字轴2分别以铰链联接,当两轴有角位移时,轴叉1、3绕各自固定轴线回转,而十字轴则作空间运动,十字轴轴头在轴叉1、3轴承孔作摆动。

图示2-2十字轴式万向联轴器结构简图

1.3-叉轴2-十字轴

图示2-3万向联轴器传动关系图

当两轴的轴间角不等于零时,任一瞬时主动轴转角与从动轴转角如图示2-2。

在垂直主动轴1的平面上投影,主动轴叉上A点的轨迹为一实际大小的圆,从动轴叉上B点的轨迹为一椭圆。

由于OB垂直于OA,因此,当主动轴叉转过∮1,在投影面上AO点转至A‘点,BO点转至Bl‘点,O’Bl‘与。

‘A‘仍保持垂直关系,即∠B0O′Bl′=∮1。

而从动轴叉上B实际转角∮2,可将OB1所在平面转过角α使与OA所在平面重合,此时OB1成为OB1",B1"点所对中心角∠OB1"即为从动轴转角2,由几何关系可得:

tg2=tg1/cosα(2-1)

式中:

α-轴1与轴2的夹角≤10°。

1、2-主、从动轴的转角。

由上式可知主、从动轴的转角之比与轴间角α有关。

两轴的转角差△可用下式表示:

△=2-1=arctg……………(2-2)

图示2-4主、从动轴角速度比值与主动轴转角关系

根据设计要求,两轴的轴间角α≤10°,故可将上式改写成:

△=arctg()……………………(2-3)

当主动轴转角1=45°时,两轴的转角差达到最大值,近似地可用下式表示:

△max=α2/4rad……………(2-4)

由式(2-1)可得出主、从动轴之间的角速度关系式:

W2=……………(2-5)

当1=0°或180°时,从动轴角速度达到最大值w2max=w1/cosα。

当1=90°或270°时,从动轴角速度降至最小值,w2min=w1·cosα。

从动轴角速度的波动情况还可用转速不均匀系数δ表示:

δ=……………(2-6)

图示2-5为

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 幼儿读物

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1