带式运输机传动装置设计机械设计课程设计.docx

上传人:b****8 文档编号:9100613 上传时间:2023-02-03 格式:DOCX 页数:51 大小:516.11KB
下载 相关 举报
带式运输机传动装置设计机械设计课程设计.docx_第1页
第1页 / 共51页
带式运输机传动装置设计机械设计课程设计.docx_第2页
第2页 / 共51页
带式运输机传动装置设计机械设计课程设计.docx_第3页
第3页 / 共51页
带式运输机传动装置设计机械设计课程设计.docx_第4页
第4页 / 共51页
带式运输机传动装置设计机械设计课程设计.docx_第5页
第5页 / 共51页
点击查看更多>>
下载资源
资源描述

带式运输机传动装置设计机械设计课程设计.docx

《带式运输机传动装置设计机械设计课程设计.docx》由会员分享,可在线阅读,更多相关《带式运输机传动装置设计机械设计课程设计.docx(51页珍藏版)》请在冰豆网上搜索。

带式运输机传动装置设计机械设计课程设计.docx

带式运输机传动装置设计机械设计课程设计

带式运输机传动装置设计

机械设计课程设计

第一节《机械设计课程设计》概述

一、课程设计的目的

《机械设计》课程是一门专业基础课,目的在于培养学生机械设计能力。

课程设计是《机械设计》课程最后一个重要的实践性教学环节,也是机电类专业学生第一次较为全面的机械设计训练,其目的:

(1)通过课程设计培养学生综合运用《机械设计》课程及其它先修课程的理论知识,解决工程实际问题的能力,并通过实际设计训练,使理论知识得以巩固和提高。

(2)通过课程设计的实践使学生掌握一般机械设计的基本方法和程序,培养独立设计能力。

(3)进行机械设计工作基本技能的训练,包括训练、计算、绘图能力、计算机辅助设计能力,熟悉和运用设计资料(手册、图册、标准、规范等)

二、课程设计的内容和任务

1、课程设计的内容

本课程设计选择齿轮减速器为设计课题,设计的主要内容包括以下几方面:

1)拟定、分析传动装置的运动和动力参数;

(2)选择电动机,计算传动装置的运动和动力参数;

(3)进行传动件的设计计算,校核轴、轴承、联轴器、键等;

(4)绘制减速器装配图及典型零件图,用AutoCAD绘制;

(5)编写设计计算说明书。

2、课程设计的任务本课程设计要求在2周时间内完成以下的任务:

(1)绘制减速器装配图1张(A1图纸);

(2)零件工作图2张(轴、齿轮,A3图纸);

(3)设计计算说明书1份.

三、课程设计的步骤

课程设计是一次较全面较系统的机械设计训练,因此应遵循机械设计过程的一般规律,大体上按以下步骤进行:

(1)设计准备认真研究设计任务书,明确设计要求和条件,认真阅读减速器参考图,拆装减速器,熟悉设计对象。

(2)传动装置的总体设计根据设计要求拟定传动总体布置方案,选

择原动机,计算传动装置的运动和动力参数。

(3)传动件设计计算设计装配图前,先计算各级传动件的参数确定

其尺寸,并选好联轴器的类型和规格。

一般先计算外传动件、后计算内传

动件。

(4)装配图设计计算和选择支承零件,绘制装配草图,完成装配工作图。

(5)零件工作图设计零件工作图应包括制造和检验零件所需的全部内容。

(6)编写设计说明书设计说明书包括所有的计算并附简图,并写出

设计总结。

《机械设计基础》课程设计时间分配如表1-1。

表1-1课程设计步骤

次序

设计内容

时间分配(天)

1

设计准备和拟定设计方案

0.5

3

设计计算

3

4

装配图的设计和绘制

4

5

零件图的设计和绘制

2

6

整理设计说明书

0.5

四、设计任务书

设计题目设计带式运输机传动装置

原始数据见表1-2。

运输带工作拉力F=N

运输带工作速度Vm/s

卷筒直径D=mm

每日工作时间T=24h

传动工作年限a=5年

卷筒(工作机)效率96%

工作条件转动不逆转,载荷平稳,起动载荷为名义载荷的1.25倍,

运输带速度允许误差为±5%

表1-2原始数据

参数

题号

1

2

3

运输带工作拉力F/(N)

1900

2100

2000

运输带工作速度V/

(m/s)

1.6

1.6

1.8

卷筒直径D/(mm)

400

400

450

第二节传动装置的总体设计

传动装置的总体设计,主要包括拟定传动方案、选择原动机、确定总

传动比和分配各级传动比以及计算传动装置的运动和动力参数。

一、拟定传动方案

机器通常由原动机、传动装置和工作机三部分组成。

传动装置将原动

机的动力和运动传递给工作机,合理拟定传动方案是保证传动装置设计质

量的基础。

课程设计中,学生应根据设计任务书,拟定传动方案,分析传

动方案的优缺点。

现考虑有以下几种传动方案如图2-1:

c)d)

图2-1带式运输机传动方案比较

传动方案应满足工作机的性能要求,适应工作条件,工作可靠,而且

要求结构简单,尺寸紧凑,成本低,传动效率高,操作维护方便。

设计时可同时考虑几个方案,通过分析比较最后选择其中较合理的一种。

下面为图1中a、b、c、d几种方案的比较。

a方案宽度和长度尺寸较大,带传动不适应繁重的工作条件和恶劣的环境。

但若用于链式或板式运输机,有过载保护作用;

b方案结构紧凑,若在大功率和长期运转条件下使用,则由于蜗杆传

动效率低,功率损耗大,很不经济;

c方案宽度尺寸小,适于在恶劣环境下长期连续工作.但圆锥齿轮加工比圆柱齿轮困难;

d方案与b方案相比较,宽度尺寸较大,输入轴线与工作机位置是水平位置。

宜在恶劣环境下长期工作。

故选择方案a,采用V带传动(i=2~4)和一级圆柱齿轮减速器(i=3~5)传动。

传动方案简图如图2:

1—V带传动;2—电动机;3—圆柱传动减速器;4—联轴器;5—输送带;6

—滚筒

图2-2带式运输机传动装置

二、选择原动机——电动机电动机为标准化、系列化产品,设计中应根据工作机的工作情况和运动、动力参数,根据选择的传动方案,合理选择电动机的类型、结构型式、容量和转速,提出具体的电动机型号。

1、选择电动机类型和结构型式电动机有交、直流之分,一般工厂都采用三相交流电,因而选用交流电动机。

交流电动机分异步、同步电动机,异步电动机又分为笼型和绕线型两种,其中以普通笼型异步电动机应用最多,目前应用较广的Y系列自扇冷式笼型三相异步电动机,结构简单、起动性能好,工作可靠、价格低廉、维护方便,适用于不易燃、不易爆、无腐蚀性气体、无特殊要求的场合,如运输机、机床、农机、风机、轻工机械等。

2、确定电动机的功率电动机功率选择直接影响到电动机工作性能和经济性能的好坏:

若所选电动机的功率小于工作要求,则不能保证工作机正常工作;若功率过大,则电动机不能满载运行,功率因素和效率较低,从而增加电能消耗,造成浪费。

本课程设计的题目为长期连续运转、载荷平稳的机械,确定电动机功

率的原则是:

Ped>kPd

Pd=Pw/n

Pw二FV/1000nw=Tn/9550nw

Ped—电动机的额定功率

Pd—电动机的输出功率

Pw--工作机的输入功率

n—电动机至工作机间的总效率

n=nin2n3nn

nn分别为传动装置中各传动副(齿轮、蜗杆、带或链、轴承、

联轴器)的效率,设计时可参考表2-1选取

F—工作机的工作阻力

V—工作机卷筒的线速度

T—工作机的阻力矩

nw—工作机卷筒的转速

nw-工作机的效率

表2-1机械传动和轴承效率的概略值

类-效率

开式

闭式

圆柱齿轮传动

0.94—0.96

0.96—0.99

V带传动

0.94—0.97

滚动轴承(每对)

0.98—

0.995

弹性联轴器

0.99—0.995

计算传动装置的总效率时需注意以下几点:

(1)若表中所列为效率值的范围时,一般可取中间值

(2)同类型的几对传动副、轴承或联轴器,均应单独计入总效率

(3)轴承效率均指一对轴承的效率

3、确定电动机的转速

同一类型、相同额定功率的电动机低速的级数多,外部尺寸及重量较大价格较高,但可使传动装置的总传动比及尺寸减少;高速电动机则与其相反,设计时应综合考虑各方面因素,选取适当的电动机转速。

三相异步电动机常用的同步转速有3000r/min,1500r/min,1000r/min,

750r/min,常选用1500r/min或1000r/min的电动机。

常用传动机构的性能及适用范围见表2-2。

表2-2常用机构的性能及适用范围

传动机构

选用指标

平带传动

V带传动

链传动

圆柱齿轮传

功率(常用值)

/kw

(<20)

(<100)

(<100)

(最大达

50000)

单级传

动比

常用

2~4

2~4

2~5

3~5

最大

5

7

6

8

传动效率

查表2-1

许用的线速度

<25

<25~30

<40

6级精度w

18

外廓尺寸

传动精度

中等

工作平稳性

较差

自锁性能

过载保护作用

使用寿命

中等

缓冲吸振能力

中等

要求制造及

安装精度

中等

要求润滑条件

不需

不需

中等

环境适应性

不能接触酸、碱、油、爆炸

性气体

一般

设计时可由工作机的转速要求和传动结构的合理传动比范围,推算出

电动机转速的可选范围,即

ii,i2

各级传动机构的合理传动比范围

nd_(ii•i2•i3…

…in)nw

nd电动机可选转速范围

由选定的电动机类型、结构、容量和转速查手册,查出电动机型号,并记

录其型号、额定功率、满载转速、中心高、轴伸尺寸、键联接尺寸等。

设计传动装置时,一般按电动机的实际输出功率Pd计算,转速则取满载转

速nW。

例2.1如前图a所示带式运输机的传动方案。

已知卷筒直径D=500mm,运输带的有效拉力F=1500N,运输带速度v=2m/s,卷筒效率为0.96,长期连续工作。

试选择合适的电动机

解:

(1)选择电动机类型

按已知的工作要求和条件,选用Y形全封闭笼型三相异步电动机。

(2)选择电动机的功率

工作机时所需电动机输出功率为:

Pd=pw/n

pw=Fv/(1000nw)所以pd=Fv/(1000nwn)

电动机至工作机间的总效率(包括工作机效率)为

2

nnw=n1n2n3n4n5nw

nin2n3n4n5nw分别为带传动、齿轮传动的轴承,齿轮传动、联轴器、卷筒轴的轴承及卷筒的效率。

取n1=0.96n2=0.99n3=0.97n4=0.97

n5=0.98nw=0.96

所以nnw=n1n;n3n4n5nw=0.96x0.992x0.97x0.99x0.98x

0.96=0.83

所以pd=Fv/(1000nwn)=1500x2/(1000x0.83)KW=3.61KW

(3)确定电动机转速

卷筒轴的工作转速为:

nw=60x1000V/(二D)=60X1000X2/(3.14X

500)r/min=76.4r/min

按推荐的合理传动比范围取V带传动的传动比i1'=2~4,单级齿轮传动

比i2'=3~5则合理总传动比的范围为:

i'=6~20,故电动机转速的可选范围为

nd=inw=(6~20)x76.4r/min=458~1528r/min

符合这一范围的同步转速有750r/min,1000r/min,1500r/min。

再根据计算出的容量查有关手册选择电动机型号,本设计中可参考表**,然

后将选择结果列于下表。

电动机型号

额定功率

电动机转速(r/min)

传动装置的的传动比

Ped/kW

同步转

满载转

总传动比

齿轮

1

Y160M—8

4

750

720

9.42

3

3.14

2

Y132M—6

4

1000

960

12.57

3.14

4

3

Y112M—4

4

1500

1440

18.85

3.5

5.385

综合考虑选Y132M—6电动机,查手册求出其它尺寸(中心高、外型尺寸、安装尺寸、轴伸尺寸、键联接尺寸等)。

三、传动装置总传动比的确定及各级传动比的分配

由选定电动机的满载转速nm和工作机主动轴的转速nw可得传动装置的

总传动比i=nMnw对于多级传动i=i1•i2in计算出总传动比后,

应合理地分配各级传动比,限制传动件的圆周速度以减少动载荷,分配各级传动比时应注意以下几点:

(1)各级传动的传动比应在推荐的范围之内选取。

(2)应使传动装置结构尺寸较小,重量较轻。

(3)应使各传动件的尺寸协调,结构匀称合理,避免相互干涉碰撞。

一般应使带的传动比小于齿轮传动的传动比。

四、计算传动装置的运动和动力参数

为进行传动件的设计计算,应首先推算出各轴的转速、功率和转矩,一般按由电动机至工作机之间运动传递的路线推算各轴的运动和动力参数。

(1)各轴的转速(r/min):

n1=nm/i0

n2=n1/i1=nm/i0i1n3=n2/i2=nm/i0i1i2

式中的nm为电动机的满载速度

n1、n2、n3分别为1、2、3轴的转速

i0——电动机至1轴的传动比

i1——1轴至2轴的传动比

i2——2轴至3轴的传动比

p2=p1n12=pdn01n12p3=p2n01n12n23

Pd为电动机的输出功率,pi、P2、P3分别为1、2、3轴的输入功率,

n01、n12、n23分别为电动机轴与

率。

1轴,1轴与2轴,2轴与3轴间的传动效

例2.2同例2.1的已知条件和计算结果,计算传动装置各轴的运动和动力参数。

解:

(1)各轴的转速:

n1=nm/i0=960/3.14r/min=305.73r/min

n2=n1/i1=305.73/4r/min=76.4r/min

nw=76.4r/min

(2)各轴的输入功率:

pi=pdn01=3.6x0.96kw=3.456kw

p2=pin12=pin2n3=3.456x0.99x0.97kw=3.32kw

p3=p2n2n4=3.32x0.99x0.97kw=3.19kw

Td=9550pd/nm=9550x3.6/960Nm=35.91Nm

Ti=Tdion01=Tdion1=35.91x3.14x0.96Nm=108.25Nm

T2=Tiiin12=Tiiin2n3=108x4x0.99x0.97Nm=415.82Nm

T3=T2n2n4=415.82x0.99x0.97Nm=399.31Nm

将运动和动力参数的计算结果列于下表。

轴名

参数

电动机轴

1轴

2轴

卷筒轴

转速n(r/min)

960

305.73

76.4

76.4

输入功率P(kw)

3.6

3.456

3.32

3.19

输入转矩T(Nm)

35.91

108.25

415.82

399.31

传动比i

3.14

4

1

效率n

0.96

0.96

0.96

第三节传动零件的设计计算

一、减速箱外传动零件带传动设计

(1)带传动设计的主要内容选择合理的传动参数;确定带的型号、

长度、根数、传动中心距、安装要求、对轴的作用力及带的材料、结构和

尺寸等。

(2)设计依据传动的用途及工作情况;对外廓尺寸及传动位置的要

求;原动机种类和所需的传动功率;主动轮和从动轮的转速等。

(3)注意问题带传动中各有关尺寸的协调,如小带轮直径选定后要

检查它与电动机中心高是否协调;大带轮直径选定后,要检查与箱体尺寸

是否协调。

小带轮孔径要与所选电动机轴径一致;大带轮的孔径应注意与

带轮直径尺寸相协调,以保证其装配稳定性;同时还应注意此孔径就是减速器小齿轮轴外伸段的最小轴径。

例3-1设计带式输送机传动系统中的普通V带传动。

原动机为Y132M1-6型电动机,电动机额定功率Ped=4KW满载转速nm=960r/min,小带轮安装在电机轴上,带的传动比i=3.14,一天工作时间t=24h,5年寿命。

解:

(1)选择V带型号

查表,得工作情况系数KA=1.4,求得所需传递功率Pc=KAXPc=1.4x

4=5.6KW

由小带轮转速n1及功率功率Pc选择小带轮型号为A型。

(2)确定带轮直径

dd1=112mm,dd2=xidd1=355mm

(3)核算带轮速度

v=ndd1nm/6000=563m/s

5m/s

(4)初步确定中心距

0.7(dd1+dd2)va0<2(dd1+dd2),贝S326.9mm

Ld0=2a0+n(dd1+dd2)/2+(dd1-dd2)2/(4a0)=1958.017,取

a=a0+(Ld-L0)/2=620.

(6)校核V带的包角

a仁1800—2arcsin(dd1-dd2)/(2a)=157.4o>120o

(7)确定带的确良根数Z

查表单根V带传递功率P0=1.16KW,

查表传递功率增量△P0=kbn1(1-1/ki)=0.119,

包角修正系数ka=0.93,

长度修正系数kl=1.03,

Z>Pc/[(P0+△P0)kakl]=4.57(根)

Z=5根。

(8)确定单根V带的拉力F0

F0=500Pc(2.5/ka-1)/Zv+qv2=171.09N

(9)对轴的压力FQ

FQ=2ZF0Sina1/2=1677.7N

(10)结果是5根A—GB11544-89V带,中心距a=600mm带的基准直径dd1=112mm,dd2=355m,m对轴的压力FQ=1677.7N,带轮的宽度B=(Z—

1)e+2f=78(mm).

二、减速器内传动零件——一级圆柱齿轮传动设计

圆柱齿轮设计计算及结构设计的方法、步骤均可依教材的有关内容进行,其注意事项如下:

(1)齿轮材料的选择要注意毛坯制造方法:

选择材料前应先估计大齿

轮的直径,如果大齿轮直径较大,应选用铸造毛坯,材料一般可选铸钢或铸铁;如果小齿轮的齿根圆直径与轴径接近,可制成齿轮轴,选用的材料应兼顾轴的要求,同一减速器的各小齿轮(或大齿轮)的材料应尽可能一致,以减少材料的牌号,降低加工的工艺要求。

(2)计算齿轮的啮合几何尺寸时应精确到小数点后2~3位,角度应精

确到秒,而中心距、宽度和结构尺寸应尽量圆整为整数。

(3)参数的合理选择,通常取乙二20~40,在保证齿根弯曲强度的前提

下,Z1可取大些;传递动力的齿轮,其模数应大于1.5~2mm。

例3.2设计一台单级直齿圆柱齿轮减速器,已知传递的功率

P=3.4656KW,电动机驱动,小齿轮转速ni=305.73r/min,传动比i=4,单向

运转,载荷平稳,使用寿命5年,三班制工作。

解:

(1)选择齿轮材料及精度等级:

小齿轮选用45号钢调质,硬度为220—250HBS大齿轮选用45号钢正火,硬度为170—210HBS因为是普通减速器由教材表10.21选8级精度,要求齿面粗糙度RW3.2—6.3um

(2)按齿面接触疲劳强度设计

因两齿轮均为钢质齿轮,可求出di值,确定有关参数与系数。

1)转矩Ti=9550Xp/ni=9550X3.4656/305.73=108.25Nm

2)载荷系数k查表10-2取k=1.1

3)齿数乙和齿宽系®d

小齿轮的齿数Zi取为27,则大齿轮齿数乙=i.Z1=108,乙、乙互质,取

乙=107。

因单级齿轮传动为对称布置,而齿轮齿面又为软齿面,由表10-7

选取4d=1

4)许用接触应力【6h】

由相关图表查得6Hlim1=560Mpa,6Hlim2=530Mpa,SH=1

9

N=60njln=60X305.73x(5x52x120)=0.57x10

99

N2=N1/i=0.57x109/4=0.14x109

查相关图表得ZN1=1.06,ZN2=1.10

【6h】1=Zn1•6Hiim1/Sh=1.06x560/1Mpa=593.6Mpa

【6h】2=Zn2•6Hiim2/Sh=1.1x530/1Mpa=583Mpa

d1>76.43(KT(U+1)/(4dU【6h】2))1/3

=76.43x(1.1x108.25x103x5/(1x4x(593.6)2)1/3)mm=57.35mm

m=d1/z1=57.35/27mm=2.12mm

取m=2.5mmd1=mz1=2.5x27=67.5mm

d2=mz2=2.5x107mm=267.5mm

b=4dxd1=1x67.5mm=67.5mm经圆整后取b2=70mm,b=b2+5mm=75mm,

a=m(z1+z2)/2=2.5(27+107)/2mm=167.5mm.

三、轴径初选

1)初选轴径轴的结构设计要在初步估算出一段轴径的基础上进

行。

轴径可按扭转强度初算,计算式为:

d>c(P/n)1/3

式中P――轴所传递的功率(Kw)

n轴的转速(r/min)

c由轴的许用切应力所确定的系数(查表见教材)

初估的轴径为轴上受扭段的最小直径,此处如有键槽,还要考虑键槽对轴强度削弱的影响。

有一个键槽时,直径增大3%~5%并圆整,若外伸轴用

联轴器与电动机轴相联,则应综合考虑电动机轴径及联轴器孔径尺寸,对初算轴径尺寸适当调整。

(2)联轴器选择一般传动装置中有两个联轴器,一个联接电动机轴与减速器高速轴的联轴器,另一个是联接减速器低速轴与工作机的联轴器。

对中、小型减速器的输入轴、输出轴均可采用弹性柱销联轴器,它加工制造容易,装拆方便、成本低,能缓冲减震。

本方案联轴器联接低速轴与工作机,选弹性柱销联轴器。

第四节部件的设计与装配图的绘制

减速器的基本结构是由轴系部件、箱体及附件三大部分组成。

这里介绍一下轴系部件设计的方法与步骤:

一、轴系部件的设计

轴系部件包括传动件、轴和轴承组合。

1、轴承类型的选择减速器中常用的轴承是滚动轴承,滚动轴承类型可参照如下原则进行选择:

(1)考虑轴承所承受载荷的方向和大小。

原则上,当轴承仅承受纯径向载荷时,一般选用深沟球轴承;当轴承既承受径向载荷又承受轴向载荷时,一般选用角接触球轴承或圆锥滚子轴承:

但如果轴向载荷不大时,应选用深沟球轴承。

(2)转速较高,旋转精度要求较高,而载荷较小时和般选用球轴承。

(3)载荷较大且有冲击振动时,宜选用滚子轴承(相同外形尺寸下,滚子轴承一般比球轴承承载能力大,但当轴承内径d<20mnfl寸,这种优点不

显著,由于球轴承价格低

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1