Laser Annealing of Power Devices.docx

上传人:b****8 文档编号:9098340 上传时间:2023-02-03 格式:DOCX 页数:19 大小:574.09KB
下载 相关 举报
Laser Annealing of Power Devices.docx_第1页
第1页 / 共19页
Laser Annealing of Power Devices.docx_第2页
第2页 / 共19页
Laser Annealing of Power Devices.docx_第3页
第3页 / 共19页
Laser Annealing of Power Devices.docx_第4页
第4页 / 共19页
Laser Annealing of Power Devices.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

Laser Annealing of Power Devices.docx

《Laser Annealing of Power Devices.docx》由会员分享,可在线阅读,更多相关《Laser Annealing of Power Devices.docx(19页珍藏版)》请在冰豆网上搜索。

Laser Annealing of Power Devices.docx

LaserAnnealingofPowerDevices

ThediscreteIGBT(InsulatedGateBipolarTransistor)isthemostimportantpowersemiconductordeviceforpowerconversionandcontrolinthemediumpowerrangewithvoltages>400V.NextgenerationIGBTsrequirelowthermalbudgetp-njunctionformationforthebacksidefieldstopandemitterlayer.Therequirementforthelimitedthermalbudgetisduetothefactthatthefrontsidemetallizationdoesnotallowhightemperaturetreatmentfortheactivationofthefieldstoplayer.Therefore,laserannealingexperimentshavebeencarriedoutusingafrequencydoubledYb:

YAGlaseratawavelengthof515nmwithanenergydensityupto4J/cm2.InordertofindoutappropriateprocessconditionsforasinglestepBoronandPhosphorouslaserannealingprocess,parametersforionimplantationaswellasenergydensityandpulsedurationofthelaserhavebeenvaried.ThedopingprofilesofBoronandPhosphorousweremeasuredbySecondaryIonMassSpectroscopy(SIMS)andSpreadingResistanceProbe(SRP)inordertoassessthedopantactivationbehaviour.ThemaininterestwastheactivationofthePhosphorousdopedfieldstoplayerinadepthrangeof1mum.AstrongdependencyofPhosphorousactivationonimplantedBorondosewasobservedwithdopantactivationupto70%.

Thispaperappearsin:

AdvancedThermalProcessingofSemiconductors,2007.RTP2007.15thInternationalConferenceon,IssueDate:

2-5Oct.2007,Writtenby:

Friedrich,Detlef;Bernt,Helmut;Hanssen,Henning;Oesterlin,Peter;Schmidt,Henning

INTRODUCTION

IGBTsareusedformostpowerswitchingapplicationsinthefieldsofe.g.automotive,industryandconsumerelectronics.ThemainadvantageofIGBTsistheexcellentconductionbehaviourcombinedwithhighrobustness,soIGBTsarewidelyusedforallkindsofmotorcontrolpurposes.DiscreteIGBTsareverticaltransistors,meansthecurrentflowisdirectedfromthefrontsideofthedevicetothebacksideIGBTshavebeencontinuouslyimprovedovertheyearswithspecialfocusonreductionofswitchingandconductionlosses.Therefore,oneofthemainactivitiesisthereductionofthesubstratethicknessdowntoablockingvoltagedependentminimalvaluewhichensurestheOff-statewithoutvoltagebreakdown.Fora600VIGBTthedevicephysicallimitforthesubstratethicknesswillbereachedwiththenextgenerationsoftrenchfieldstopIGBTshavingasubstratethicknessbelow50μm .TherealizationofultrathinIGBTswithlowconductionlossesispossibleonlybyimplementingafieldstoplayerfromthebacksideofthewafer[2][3]asshowninfigure1.

Fig.1:

Schematiccrosssectionofa600VtrenchfieldstopIGBThavingaPhosphorousfieldstopandBoronemitterimplantedfromthewaferbackside

ViewAll|Next

SincehomogeneouslydopedFZsubstratesarepreferredtobeusedinsteadofmoreexpensiveepitaxialwafersthefieldstopandemitterlayershavetobecreatedbyionimplantationusingPhosphorousandBoron,respectivelywithlowthermalbudgetactivation.ThechallengeinfabricationofultrathinfieldstopIGBTsisthehandlingofsubstratesinthethicknessrangeof50μm afterbacksidegrindingandthelimitedthermalbudgetforbacksideprocessinginthecasethefrontsidehasbeenfinalizedbefore.Here,therequirementforthelimitedthermalbudgetisduetothefactthatthefrontsidemetallizationoftheIGBTdoesnotallowhightemperaturetreatmentfortheactivationoftheimplantedspecies.

Therefore,Yb:

YAGlaserannealingatawavelengthof515nmwithmaximumenergydensityupto4J/cm 2  andpulsedurationsintherangeof350–600nsechasbeeninvestigated.SufficientdopantactivationoftheimplantedfieldstoplayerdowntoaSi-depthof1μm isrequiredwhichisinaccordancewiththepenetrationdepthsofalaserfor515nmwavelength.Duetothisexcellentmatchingbetweenthepenetrationdepthsandthedepthsofthefieldstoplayeralaserwavelengthof515nmispreferentialcomparedtoshorterwavelengths.Sincetheminimumactivateddoserequiredforafieldstoplayerisabout3×10 12 cm −2  thedepthsofthefieldstoplayercanbeinthe1μm rangeorevenbelowaslongthedopantconcentrationisintherangeof10 17 cm −3  .Theimplantationofboth,fieldstoplayerandemitterwithsubsequentlaserannealingispreferredsinceinthiscasehomogeneouslydopedfloatzonesubstratescanbeusedinsteadofsubstrateswithepitaxialdriftzonelayers.

Activationofdopantswithfrequencydoubledpulsedsolidstatelasershasbeenproposedandpursuedsinceseveralyears[4][5].EspeciallyKudoandWakabayashi[5]investigateddopantactivationasafunctionoflaserpulseparametersindetail.Theywereabletoshowgoodactivationrate.However,theirdatawereforsingleimplantsonly,eitherBoronimplantsfortheemitterorPhosphorousimplantsforthefieldstoplayer.Inthisworkwedemonstratethatbothimplantscanbeactivatedsimultaneouslyinasingleprocessstepwithsufficientactivationrate.

oINTRODUCTION

oEXPERIMENTAL

oRESULTS

oTEMPERATURESIMULATIONS

oCONCLUSION

EXPERIMENTAL

Toexplorethepotentialofpulsedlaserannealingat515nm,testannealsofplainwaferswithBoronandPhosphorousdopantswereperformed.Forthesamplepreparation6inchFloatZone(FZ)wafershavebeenusedwithan-typePhosphorousconcentrationof10 14 cm −2  .Theionimplantationforthefieldstoplayerandemitterwascarriedoutwithamediumcurrentimplanter(VarianE220).TheemitterwascreatedbyBoronimplantationintherange5×10 14 cm −2  upto1×10 16 cm −2  withanenergyof30keV.ForthefieldstoplayeradualPhosphorousimplantationwasperformedwithadoseof2×10 13 cm −2  atanenergyof200keVand4×10 13 cm −2  with400keV.Thelaserenergydensitywasvariedbetween2.6and4J/cm 2  ,andthepulsedurationofthelaserwasadjustedbetween350and600ns.

ThetestannealswereperformedwithanINNOVAVENTopticalannealingsystemVOLCANOwhichwasoperatedwithalaboratoryASAMAlaseremittingpulsedlaserradiationat515nm.ThiswavelengthhasapenetrationintocrystallineSiofroughly1μm ,andthusallowstobringlaserenergyintothebulkmaterial,incontrasttoUVlaserradiationwhichisabsorbedina<10 nmthinsurfacelayer.ThelaboratoryVOLCANOsystemcreatedalaserlineonthewaferwithalengthof1mmwithatop-hatintensityprofile(within+/−3% variation)andaGaussianprofilewidthof40or80μm FWHM.Figure2showstypicalbeamprofiles.

Fig.2a:

LongaxishomogenizedbeamprofileoftheINNOVAVENTVOLCANOopticalsystem

Previous|ViewAll|Next

Fig.2b:

ShortaxisGaussianbeamprofileoftheINNOVAVENTVOLCANOopticalsystem

Previous|ViewAll|Next

TheASAMAlaserallowsvariationofthepulsedurationbycomputercontrol.Thisuniquefeaturemadeitveryeasytoperformtestannealswithdifferentpulsedurationsbetween250and650ns.Figure3showstwolaserpulseswith300and646ns.Energydensitycouldbevariedbetween<1J/cm 2  upto4J/cm 2  usinganopticalattenuator.

Fig.3:

ContinuouslyvariablepulsedurationoftheASAMAlaser.Twodifferentlaserpulseswithpulseduration300ns(uppertrace)and646ns(lowertrace)areshownasexamples

Previous|ViewAll|Next

MoreinformationabouttheVOLCANOannealingsystemandtheASAMAlasercanbefoundelsewhere[6].

Forthelaserannealingtests,singlewafersweremanuallyalignedandplacedontoamotorizedhighresolutionxystagewhichwasequippedwithavacuumchuck.Thelaserprocessshutterwassynchronizedtothemovementofthestage.Acomputercontrolsystemallowedtoilluminatepartsofthewaferwithdifferentlaserbeamparameters.Thelaserlinewasscannedinthedirectionofitssmalldimensionwithvariablevelocity(variationofpulseoverlap).Foralltestsreportedherethescanspeedwaschosensothatthelaserpulsesoverlappedby90%withreferencetotheFWHMofthelinewidth.Figure4showsthetypicaloverlapofpulses.Severaloftheselines,each1mmwide,werestitchedsidebysidetoanneallargerareas.Noindicationcouldbefoundfordifferencesoftheannealingresultsinthestitchingareas.

Fig.4:

Pulseoverlapofthelinescanprocess

Previous|ViewAll|Next

Alltestannealswereperformedatroomtemperatureonair.

ForcharacterizationpurposesthedopingprofileshavebeenanalyzedbySecondaryIonMassSpectroscopy(SIMS)andSpreadingResistanceProbe(SRP).ForSIMSanalysisaCamecaIMS-4fsystemwasusedwithCs +  primaryionsforPhosphorousatanenergyof12,5keV.Instead,forBoronanalysisO 2  +  ionswereusedatthesameenergy.

ThespreadingresistancemeasurementswerecarriedoutbyusingtheSSM150system.

Also,simulationsfortheionimplantationhavebeenperformedasareferencebyusingthecommercialsimulatorAthenafromSilvaco.

oINTRODUCTION

oEXPERIMENTAL

oRESULTS

oTEMPERATURESIMULATIONS

oCONCLUSION

RESULTS

ItwastheaimofthisinvestigationtoverifywhetherasinglesteplaserannealforaBoron/Phosphorousp-njunctiongivessufficientactivateddoseforthen-typefieldstoplayer.ForthispurposetheasimplantedPhosphorousandBoronprofileshavebeenmeasuredbySIMSandcomparedbysimulationsusingtheSilvacoAthenaprocesssimulator.

Boronwasimplantedatahighdoseof1×10 16 cm −2  withanenergyof30keV.ForPhosphorousatwofoldimplantationat400keVwithdoublechargedionsand200keVwasbeingappliedhavingdosevaluesof4×10 13 cm −2  and2×10 13 cm −2  ,respectively.

Asdepictedinfigure5agoodcorrelationbetweentheSIMSandsimulationprofilesisobvious,especiallyfortheBoronprofile.ThePhosphoroustailoftheSIMSmeasureme

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 小学作文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1