Laser Annealing of Power Devices.docx
《Laser Annealing of Power Devices.docx》由会员分享,可在线阅读,更多相关《Laser Annealing of Power Devices.docx(19页珍藏版)》请在冰豆网上搜索。
LaserAnnealingofPowerDevices
ThediscreteIGBT(InsulatedGateBipolarTransistor)isthemostimportantpowersemiconductordeviceforpowerconversionandcontrolinthemediumpowerrangewithvoltages>400V.NextgenerationIGBTsrequirelowthermalbudgetp-njunctionformationforthebacksidefieldstopandemitterlayer.Therequirementforthelimitedthermalbudgetisduetothefactthatthefrontsidemetallizationdoesnotallowhightemperaturetreatmentfortheactivationofthefieldstoplayer.Therefore,laserannealingexperimentshavebeencarriedoutusingafrequencydoubledYb:
YAGlaseratawavelengthof515nmwithanenergydensityupto4J/cm2.InordertofindoutappropriateprocessconditionsforasinglestepBoronandPhosphorouslaserannealingprocess,parametersforionimplantationaswellasenergydensityandpulsedurationofthelaserhavebeenvaried.ThedopingprofilesofBoronandPhosphorousweremeasuredbySecondaryIonMassSpectroscopy(SIMS)andSpreadingResistanceProbe(SRP)inordertoassessthedopantactivationbehaviour.ThemaininterestwastheactivationofthePhosphorousdopedfieldstoplayerinadepthrangeof1mum.AstrongdependencyofPhosphorousactivationonimplantedBorondosewasobservedwithdopantactivationupto70%.
Thispaperappearsin:
AdvancedThermalProcessingofSemiconductors,2007.RTP2007.15thInternationalConferenceon,IssueDate:
2-5Oct.2007,Writtenby:
Friedrich,Detlef;Bernt,Helmut;Hanssen,Henning;Oesterlin,Peter;Schmidt,Henning
INTRODUCTION
IGBTsareusedformostpowerswitchingapplicationsinthefieldsofe.g.automotive,industryandconsumerelectronics.ThemainadvantageofIGBTsistheexcellentconductionbehaviourcombinedwithhighrobustness,soIGBTsarewidelyusedforallkindsofmotorcontrolpurposes.DiscreteIGBTsareverticaltransistors,meansthecurrentflowisdirectedfromthefrontsideofthedevicetothebacksideIGBTshavebeencontinuouslyimprovedovertheyearswithspecialfocusonreductionofswitchingandconductionlosses.Therefore,oneofthemainactivitiesisthereductionofthesubstratethicknessdowntoablockingvoltagedependentminimalvaluewhichensurestheOff-statewithoutvoltagebreakdown.Fora600VIGBTthedevicephysicallimitforthesubstratethicknesswillbereachedwiththenextgenerationsoftrenchfieldstopIGBTshavingasubstratethicknessbelow50μm .TherealizationofultrathinIGBTswithlowconductionlossesispossibleonlybyimplementingafieldstoplayerfromthebacksideofthewafer[2][3]asshowninfigure1.
Fig.1:
Schematiccrosssectionofa600VtrenchfieldstopIGBThavingaPhosphorousfieldstopandBoronemitterimplantedfromthewaferbackside
ViewAll|Next
SincehomogeneouslydopedFZsubstratesarepreferredtobeusedinsteadofmoreexpensiveepitaxialwafersthefieldstopandemitterlayershavetobecreatedbyionimplantationusingPhosphorousandBoron,respectivelywithlowthermalbudgetactivation.ThechallengeinfabricationofultrathinfieldstopIGBTsisthehandlingofsubstratesinthethicknessrangeof50μm afterbacksidegrindingandthelimitedthermalbudgetforbacksideprocessinginthecasethefrontsidehasbeenfinalizedbefore.Here,therequirementforthelimitedthermalbudgetisduetothefactthatthefrontsidemetallizationoftheIGBTdoesnotallowhightemperaturetreatmentfortheactivationoftheimplantedspecies.
Therefore,Yb:
YAGlaserannealingatawavelengthof515nmwithmaximumenergydensityupto4J/cm 2 andpulsedurationsintherangeof350–600nsechasbeeninvestigated.SufficientdopantactivationoftheimplantedfieldstoplayerdowntoaSi-depthof1μm isrequiredwhichisinaccordancewiththepenetrationdepthsofalaserfor515nmwavelength.Duetothisexcellentmatchingbetweenthepenetrationdepthsandthedepthsofthefieldstoplayeralaserwavelengthof515nmispreferentialcomparedtoshorterwavelengths.Sincetheminimumactivateddoserequiredforafieldstoplayerisabout3×10 12 cm −2 thedepthsofthefieldstoplayercanbeinthe1μm rangeorevenbelowaslongthedopantconcentrationisintherangeof10 17 cm −3 .Theimplantationofboth,fieldstoplayerandemitterwithsubsequentlaserannealingispreferredsinceinthiscasehomogeneouslydopedfloatzonesubstratescanbeusedinsteadofsubstrateswithepitaxialdriftzonelayers.
Activationofdopantswithfrequencydoubledpulsedsolidstatelasershasbeenproposedandpursuedsinceseveralyears[4][5].EspeciallyKudoandWakabayashi[5]investigateddopantactivationasafunctionoflaserpulseparametersindetail.Theywereabletoshowgoodactivationrate.However,theirdatawereforsingleimplantsonly,eitherBoronimplantsfortheemitterorPhosphorousimplantsforthefieldstoplayer.Inthisworkwedemonstratethatbothimplantscanbeactivatedsimultaneouslyinasingleprocessstepwithsufficientactivationrate.
∙
oINTRODUCTION
oEXPERIMENTAL
oRESULTS
oTEMPERATURESIMULATIONS
oCONCLUSION
EXPERIMENTAL
Toexplorethepotentialofpulsedlaserannealingat515nm,testannealsofplainwaferswithBoronandPhosphorousdopantswereperformed.Forthesamplepreparation6inchFloatZone(FZ)wafershavebeenusedwithan-typePhosphorousconcentrationof10 14 cm −2 .Theionimplantationforthefieldstoplayerandemitterwascarriedoutwithamediumcurrentimplanter(VarianE220).TheemitterwascreatedbyBoronimplantationintherange5×10 14 cm −2 upto1×10 16 cm −2 withanenergyof30keV.ForthefieldstoplayeradualPhosphorousimplantationwasperformedwithadoseof2×10 13 cm −2 atanenergyof200keVand4×10 13 cm −2 with400keV.Thelaserenergydensitywasvariedbetween2.6and4J/cm 2 ,andthepulsedurationofthelaserwasadjustedbetween350and600ns.
ThetestannealswereperformedwithanINNOVAVENTopticalannealingsystemVOLCANOwhichwasoperatedwithalaboratoryASAMAlaseremittingpulsedlaserradiationat515nm.ThiswavelengthhasapenetrationintocrystallineSiofroughly1μm ,andthusallowstobringlaserenergyintothebulkmaterial,incontrasttoUVlaserradiationwhichisabsorbedina<10 nmthinsurfacelayer.ThelaboratoryVOLCANOsystemcreatedalaserlineonthewaferwithalengthof1mmwithatop-hatintensityprofile(within+/−3% variation)andaGaussianprofilewidthof40or80μm FWHM.Figure2showstypicalbeamprofiles.
Fig.2a:
LongaxishomogenizedbeamprofileoftheINNOVAVENTVOLCANOopticalsystem
Previous|ViewAll|Next
Fig.2b:
ShortaxisGaussianbeamprofileoftheINNOVAVENTVOLCANOopticalsystem
Previous|ViewAll|Next
TheASAMAlaserallowsvariationofthepulsedurationbycomputercontrol.Thisuniquefeaturemadeitveryeasytoperformtestannealswithdifferentpulsedurationsbetween250and650ns.Figure3showstwolaserpulseswith300and646ns.Energydensitycouldbevariedbetween<1J/cm 2 upto4J/cm 2 usinganopticalattenuator.
Fig.3:
ContinuouslyvariablepulsedurationoftheASAMAlaser.Twodifferentlaserpulseswithpulseduration300ns(uppertrace)and646ns(lowertrace)areshownasexamples
Previous|ViewAll|Next
MoreinformationabouttheVOLCANOannealingsystemandtheASAMAlasercanbefoundelsewhere[6].
Forthelaserannealingtests,singlewafersweremanuallyalignedandplacedontoamotorizedhighresolutionxystagewhichwasequippedwithavacuumchuck.Thelaserprocessshutterwassynchronizedtothemovementofthestage.Acomputercontrolsystemallowedtoilluminatepartsofthewaferwithdifferentlaserbeamparameters.Thelaserlinewasscannedinthedirectionofitssmalldimensionwithvariablevelocity(variationofpulseoverlap).Foralltestsreportedherethescanspeedwaschosensothatthelaserpulsesoverlappedby90%withreferencetotheFWHMofthelinewidth.Figure4showsthetypicaloverlapofpulses.Severaloftheselines,each1mmwide,werestitchedsidebysidetoanneallargerareas.Noindicationcouldbefoundfordifferencesoftheannealingresultsinthestitchingareas.
Fig.4:
Pulseoverlapofthelinescanprocess
Previous|ViewAll|Next
Alltestannealswereperformedatroomtemperatureonair.
ForcharacterizationpurposesthedopingprofileshavebeenanalyzedbySecondaryIonMassSpectroscopy(SIMS)andSpreadingResistanceProbe(SRP).ForSIMSanalysisaCamecaIMS-4fsystemwasusedwithCs + primaryionsforPhosphorousatanenergyof12,5keV.Instead,forBoronanalysisO 2 + ionswereusedatthesameenergy.
ThespreadingresistancemeasurementswerecarriedoutbyusingtheSSM150system.
Also,simulationsfortheionimplantationhavebeenperformedasareferencebyusingthecommercialsimulatorAthenafromSilvaco.
∙
oINTRODUCTION
oEXPERIMENTAL
oRESULTS
oTEMPERATURESIMULATIONS
oCONCLUSION
RESULTS
ItwastheaimofthisinvestigationtoverifywhetherasinglesteplaserannealforaBoron/Phosphorousp-njunctiongivessufficientactivateddoseforthen-typefieldstoplayer.ForthispurposetheasimplantedPhosphorousandBoronprofileshavebeenmeasuredbySIMSandcomparedbysimulationsusingtheSilvacoAthenaprocesssimulator.
Boronwasimplantedatahighdoseof1×10 16 cm −2 withanenergyof30keV.ForPhosphorousatwofoldimplantationat400keVwithdoublechargedionsand200keVwasbeingappliedhavingdosevaluesof4×10 13 cm −2 and2×10 13 cm −2 ,respectively.
Asdepictedinfigure5agoodcorrelationbetweentheSIMSandsimulationprofilesisobvious,especiallyfortheBoronprofile.ThePhosphoroustailoftheSIMSmeasureme