02第二章内燃机的工作指标.docx

上传人:b****7 文档编号:8974781 上传时间:2023-02-02 格式:DOCX 页数:25 大小:147.21KB
下载 相关 举报
02第二章内燃机的工作指标.docx_第1页
第1页 / 共25页
02第二章内燃机的工作指标.docx_第2页
第2页 / 共25页
02第二章内燃机的工作指标.docx_第3页
第3页 / 共25页
02第二章内燃机的工作指标.docx_第4页
第4页 / 共25页
02第二章内燃机的工作指标.docx_第5页
第5页 / 共25页
点击查看更多>>
下载资源
资源描述

02第二章内燃机的工作指标.docx

《02第二章内燃机的工作指标.docx》由会员分享,可在线阅读,更多相关《02第二章内燃机的工作指标.docx(25页珍藏版)》请在冰豆网上搜索。

02第二章内燃机的工作指标.docx

02第二章内燃机的工作指标

第二章内燃机的工作指标

内燃机的工作指标很多,主要有动力性能指标(功率、转矩、转速)、经济性能指标(燃料与润滑油消耗率)、运转性能指标(冷起动性能、噪声和排气品质)和耐久可靠性指标(大修或更换零件之间的最长运行时间与无故障长期工作能力)。

本章主要研究表征动力性能指标和经济性能指标的各种参数及其相互关系。

运转性能指标(如冷起动性能等)和耐久可靠性指标对内燃机来说有其不可忽视的重要性,它们将在本书的其他各章中分析讨论。

第一节示功图与指示性能指标

一、示功图

燃料燃烧产生的热量是通过气缸内所进行的工作循环转化为机械能的,即气缸中工质的燃烧压力作用在活塞顶上,通过曲柄连杆机构,在克服了内燃机内部各种损耗后,对外做功。

因此,要研究内燃机的动力性能和经济性能,应首先对内燃机一个工作循环中热功转换的质和量两方面加以分析。

T上点L止点下止点上辽点

腔建和程

1-诽%巧屋

.

LVJ

■-・—■■>

—«

in

36Q,初720

图21佃冲程内燃机的於一归图

内燃机气缸内部实际进行的工作循环是非常复杂的,为获得正确反映气缸内部实际情况的试验数据,通常利用不同型式的示功器或内燃机数据采集系统来观察或记录相对于不同活塞位置或曲轴转角时气缸内工质压力的变化,所得的结果即为p—V示功图或p—©示功图。

p—V图或p—©图两者可以互相转换。

图2—1为四冲程内燃机的p—©图,图2—2为四冲程内燃机实际循环p—V图。

在进排气过程组成的发动机换气过程示功图中,由于气缸压力低,需用放大的压力标尺记录出p—©或p—V图(见第四章),也称为低压示功图

从示功图可以观察到内燃机工作循环的不同阶段(压缩、燃烧、膨胀)以及进气

排气行程中的压力变化,通过数据处理,运用热力学知识,将它们与所积累的试验数据进行分析比较,可以对整个工作过程或工作过程的不同阶段进展的完善程度作出正确的判断。

因此,示功图是研究内燃机工作过程的重要试验数据。

二、指示性能指标

内燃机的指示性能指标是指以工质对活塞做功为基础的指标。

1.指示功和平均指示压力指示功是指气缸内完成一个工作循环所得到的有用

功Wi。

指示功的大小可以由p—V图中闭合曲线所占有的面积求得,图2—3中示出了四冲程非增压和增压发动机以及二冲程发动机的示功图。

图2d发功机的护一厂图

泊四抻稈非堵圧童动机b)13卸釋坤伍戡曲机曰二冲稈叢菇机

图2—3a中四冲程非增压发动机的指示功面积Fi是由相当于压缩、燃烧、膨

胀行程中所得到的有用功面积Fi和相当于进气、排气行程中消耗的功的面积F2(即泵损失)相减而成,即Fi=Fi—F2。

在四冲程增压发动机中(图2—3b),由于进气压力高于排气压力,在换气过程中,工质是对外做功的,因此,换气功的面积F2应

与面积Fi叠加起来,即Fi=F1+F2。

在二冲程发动机中(图2—3c),只有一块示功图面积Fi,它表示了指示功的大小。

Fi可以用求积仪或计算方法求得,然后用下式计算Wi(N•m或J)值

式中,Fi为示功图面积,cm2;a为示功图纵坐标比例尺,Pa/cm;b为示功图横坐标比例尺,cm3/cm。

WiPmi-

指示功Wi反映了发动机气缸在一个工作循环中所获得的有用功的数量,它除了和循环中热功转换的有效程度有关外,还和气缸容积的大小有关。

为了能更清楚地对不同工作容积发动机工作循环的热功转换有效程度作比较,引出了平均指示压力(用Pmi表示)的概念。

所谓平均指示压力,是指单位气缸容积一个循环所做的指示功(Pa)

(2—2)

Pmi

Wi

Vs

式中,Wi为发动机一个工作循环的指示功,J;Vs为发动机气缸工作容积,m3。

若Vs用L为单位,Wi用kJ为单位,则pmi(MPa)为

式(2—2)也可写成Wi=pmi•Vs=,其中,D和S分别为气缸直径和活塞行程,由此可以引出平均指示压力的第二个概念,即平均指示压力是一个假想的平均不变的压力,以这个压力作用在活塞顶上,使活塞移动一个冲程S所做的功,即为循

环的指示功Wi。

平均指示压力是从实际循环的角度评价发动机气缸工作容积利用率高低的一个参数。

pmi越高,同样大小的气缸容积可以发出更大的指示功,气缸工作容积的利用程度越佳。

平均指示压力是衡量发动机实际循环动力性能的一个很重要的指标。

般内燃机在标定工况下的pmi值在下列范围内:

柴油机:

四冲程非增压柴油机0.6〜0.95MPa

四冲程增压柴油机0.85〜2.6MPa

二冲程柴油机0.35〜1.3MPa

汽油机:

四冲程摩托车用汽油机0.9〜1.43MPa

四冲程小客车用汽油机0.65〜1.25MPa

四冲程载货车用汽油机0.6〜0.85MPa

二冲程小型风冷汽油机0.4〜0.85Mpa

2.指示功率

内燃机单位时间内所作的指示功称为指示功率Pi。

若一台内燃机的气缸数为

i,每缸的工作容积为V(m3),平均指示压力为pmi(N/m2),转速为n(r/s),根据pmi的定义,每循环气体所作的指示功(J)为

WipmiVs

具有i个气缸的发动机每秒所作的指示功率(W)为

P2pmiVs-i(2—3)

式中,T为冲程数,对四冲程内燃机:

T=4;对二冲程内燃机:

T=2。

在实际应用时,一般采用pmi(MPa),Vs(L),n(r/min),Pi(kW)代人可得

36iVsn

1。

沖21。

6皿总60

(2—4)

Pi

PmiVsni

30

对四冲程发动机

P

PmiVsni

120

对二冲程发动机

Pi

PmiVsni

60

3.指示热效率和指示燃油消耗率

指示热效率n

it是发动机实际循环指示功与所消耗的燃料热量的比值,

Wi

(2—5)

式中,Qi为得到指示功Wi所消耗的热量(J)。

对于一台发动机,当测得其指示功率Pi(kW)和每小时燃油消耗量B(kg/h)时。

根据nit的定义,可得

式中,3.6Xl03为1kW•h的热当量,kJ/(kW•h);B为每小时发动机的耗油量,kg/h;Hu为所用燃料的低热值,kJ/kg。

指示燃油消耗率[g/(kW•h)]是指单位指示功的耗油量,它通常以单位指示千瓦小时的耗油量来表示

(2—7)

因此,表示实际循环的经济性指标nit和bi之间存在着以下关系

(2—8)

3.6106

itHubi

若以柴油的低热值Hu=41868kJ/kg代入式(2—8),贝U

it86bi

一般内燃机的nit和bi的统计范围如下:

nit

bi/[g/(kW•h)-1]

四冲程柴油机

0.41〜0.48

210〜175

二冲程柴油机

0.40〜0.48

218〜177

四冲程汽油机

0.25〜0.40

344〜21R

二冲程汽油机

0.19〜0.27

435〜305

从统计范围可以看出:

柴油机的指示热效率高于汽油机,四冲程发动机的指

示热效率高于二冲程发动机

第二节有效性能指标

一、机械效率和有效功率

上面所讨论的指示性能指标只能评定工作循环进行的好坏,发动机发出的指示功率需扣除运动件的摩擦功率以及驱动气门机构、风扇、机油泵、发电机等附件所消耗的功率后才能变为曲轴的有效输出,所有这些消耗功率的总和称为机械损失功率Pm,从而有效功率

PePiFm

(2—9)

有效功率与指示功率之比称为机械效率

(2—10)

内燃机的有效功率Pe(kW)可以利用各种型式的测功器和转速计分别测出发动机在某一工况下曲轴的输出转矩Ttq及在同一工况下的发动机转速,按以下公式求得

(2—11)

Pe

103

9550

式中,Ttq为发动机输出转矩,N•m。

二、平均有效压力、有效功率和升功率

与平均指示压力相似,平均有效压力可看作是一个假想的、平均不变的压力作用在活塞顶上,使活塞移动一个冲程所做的功等于每循环所做的有效功。

平均有效压力是衡量发动机动力性能的一个很重要的参数。

按照上述定义可以用如式(2—4)所表示的pmi和Pi之间的关系那样,列出Pe

(kW)和pme(MPa)的关系式

应用式(2—11)和式(2—12)的恒等关系,可得

因此,对于一定气缸总工作容积(即iVs)的发动机,平均有效压力pme值反映了发动机输出转矩Ttq的大小

TtqXpme

也就是说,pme反映了发动机单位气缸工作容积输出转矩的大小。

升功率PL(kW/L)的定义是在标定工况下,发动机每升气缸工作容积所发出的有效功率

Pl

Pmen

30

(2—17)

式中,Pe为发动机的标定功率,kW;i为气缸数;Vs为每气缸工作客积,L从式(2—12)可得

式中,pme为标定工况下的平均有效压力,MPa;n为标定转速,r/min。

可见,升功率Pl是从发动机有效功率的角度对其气缸工作容积的利用率作总的评价。

它与pme和n的乘积成正比。

Pl值越大,发动机的强化程度越高,发出一定有效功率的发动机尺寸越小。

因此,不断提高pme和n的水平以获得更强化,更轻巧和紧凑的发动机,一直是内燃机工作者致力以求的奋斗目标,因而Pl是评定

一台发动机整机动力性能和强化程度的重要指标之一。

目前内燃机的pme和Pl值一般在下列范围内:

农用柴油机汽车用柴油机强化高速柴油机

Pme/MPaPL/(kWL1)

0.6〜0.88.8〜14.7

0.65〜111〜25.8

1〜2.915〜40

固定船用户速柴油机

0.6〜2.5

3.7〜7.35

四冲程摩托车用汽油机

0.78〜1.2

51.8〜88

四冲程小客车用汽油机

0.65〜1.2

40〜70

四冲程载货汽车用汽油机

0.6〜0.7

22〜25.8

四冲程小型风冷汽油机

0.4〜0.65

18.4〜73.5

三、由吸入空气量计算平均有效压力

根据每循环吸入的空气量来计算平均有效压力,可以导出平均有效压力与一些热力学参数之间的关系,从而明确提高平均有效压力的技术措施。

在推导前,先给出两个重要定义。

1.充量系数Oc

若把每循环吸入气缸的空气量换算成进气管状态(Ps,Ts)的体积Vi,其值一

般要比活塞排量Vs小,两者的比值定义为充量系数Oc,即

m1M1V1

mshMshVs

式中,m1,M1,V1分别为实际进入气缸的新鲜空气的质量、千摩尔值、在进气管状态(ps,Ts)下所占有的体积;msh,Msh,Vs分别为在进气管状态下能充满气缸工作容积的空气质量、千摩尔值及气缸工作容积。

充量系数Oc是表征实际换气过程进行完善程度的一个极为重要的参数(详见第三章)。

2.过量空气系数Oa

m1

gb1o

燃烧Ikg燃料的实际空气量与理论空气量之比称为过量空气系数Oa,即

(2—18)

式中,gb为每循环燃料供给量,kg;

Io为1kg燃料完全燃烧所需的理论空气量,称为化学计量空燃比。

柴油Io-

14.3kg/kg,汽油Io—14.8kg/kg。

对柴油机来说,Oa总是大于1,以保证喷入气缸的柴油能完全燃烧。

柴油机在吸入气缸的空气量一定的情况下,Oa小意味着可以向气缸多喷油,吸人气缸的

空气利用率高,发出的功率大。

因此,Oa是反映混合气形成和燃烧完善程度及整

机性能的一个指标,应力求减小Oa,减小Oa在小型高速柴油机中主要受燃烧完善程度的限制,在大型及增压柴油机中主要受热负荷的限制。

柴油机在全负荷时Oa

的一般数值范围为:

高速柴油机1.2〜1.5

增压柴油机1.7〜2.2

对汽油机来说,在整个运行工况中,可以遇到Oa>1和Oa<1的各种情况(详

见第五章),汽油机在全负荷时Oa的一般数值范围为

Oa=0.85〜1.1

除了运用Oa这一参数来表示燃烧时空气量和燃料量之比外,还可以应用空气燃料比或燃料空气比1/a来表示,它们之间的关系为

空燃比

空气质量流量

燃料质量流量

燃空比1

’燃料质量流量

空气质量流量

a

实际发动机的0可由废气分析法求得。

对于非增压的四冲程内燃机,也可由耗油量及耗气量按下求得

式中,Aa为每小时进入气缸的空气流量,kg/h;B为每小时耗油量,kg/h;I。

为化学计量空燃比,kg/kg。

根据式(2〜18)可得每循环供油量

~m1cmshcVss

加―T厂l—

aloaloalo

式中,p为进气管状态下的空气密度。

Wi

Vs

pme

Q1etVs

其中

Q1gbHu

cVs

sHu

a

lo

因而

pc

ets

Hu

me

a1o

pmi

Q1it

Vs

式中,Hu、p的单位分别为J/kg、kg/m3;pme为Pa。

实用上,取Hu、p的单位分别为kJ/kg、kg/L,则pme(MPa)为

数R=287J/(kg•K),得

若以ps(MPa)、Ts(K)、Hu(kJ/kg)、I。

(kg/kg燃料)代入,贝Upme(MPa)为

(2—21)

cetHuPs

Pme3.485〒s

aloTs

et

(2—23)

We

Q1

若lo换用L。

(kmol/kg燃料),则1。

=maL。

,ma为空气的分子量,代入上式可得Pme(MPa)

小3.485cetHups

Kme28.9alo

Ts

Hu

pme0.121et

Ps

(2—22)

alo

Ts

式(2—22)建立了动力性能指标和经济性能指标

nt等一系列参数之间的关系,

在以后的各章中可以看到,它是分析发动机性能的一个重要依据。

四、有效热效率和有效燃油消耗率

总的衡量发动机经济性能的重要指标是有效热效率nt和有效燃油消耗率be

有效热效率是实际循环的有效功与为得到此有效功所消耗的热量的比值,即

以式(2—5)代入得

etitm

由此可见,在nt中已经考虑到实际发动机工作时的一切损失了。

与上述n—样,可得

当测得发动机有效功率和每小时耗油量B以后,可利用此式计算出nt值。

有效燃油消耗率[g/(kW•h)]是指单位有效功的耗油量,通常用每有效kW•h所消耗的燃料g数be来表示,即

B3

be103(2—25)

由式(2—24),be[g/(kW•h)]又可表示为

(2—26)

3.6106be

eetHu

可见,有效燃油消耗率与有效热效率成反比,知道其中一值后,可求出另一值。

一般内燃机在标定工况下的be和net值大致在以下范围:

-1

低速柴油机中速柴油机高速柴油机

190〜225

195〜240

215〜285

0.38〜0.45

0.36〜0.43

0.30〜0.40

be/[g(kW•h)1]net

(其中较低的be值属排气涡轮增压的四冲程、二冲程柴油机)

四冲程汽油机274〜4100.30〜0.20

二冲程汽油机410〜5450.20〜0.15

第三节机械损失与机械效率

在评定发动机机械损失时,除了机械损失功率Pm和机械效率下夕卜,同平均

指示压力、平均有效压力的定义相似,也可应用单位气缸工作容积的比参数一一平均机械损失压力Pmmo它的定义是:

发动机单位气缸工作容积一个循环所损失的功。

它可以用来衡量机械损失的大小,参照式(2—13)可以写出pmm(MPa)为

p30入/2—27)

pmm(227)

VsIn

PmPmmVsin/2—28)

30

式中,Pm为机械损失功率(kW);Vs为工作容积(L);n为转速(r/min)。

在致力于提高内燃机性能指标时,应尽可能减少机械损失,提高机械效率。

若不注意这点,有时在改善气缸内部指示指标的同时,却不自觉地增加了机械损失,以致不能获得预期的改进效果。

一、机械损失的组成部分

1.活塞与活塞环的摩擦损失

这部分损失占整个摩擦损失的主要部分。

这是由于它的滑动面大、相对速度高、润滑不充分等原因造成的,这种摩擦与活塞的长度、活塞间隙以及活塞环的数目和环的张力等结构因素有关。

此外,在构造相同的情况下,它随气缸内压力、活塞速度以及润滑油粘度的升高而增加。

2.轴承与气门机构的摩擦损失

它包括所有主轴承、连杆轴承和凸轮轴轴承等的摩擦损失。

在这些轴承里,由于润滑充分,纯液力摩擦因数很低;随着轴承直径的增大和转速的提高,轴颈圆周速度的增大,这部分损失亦将增加,但它对气缸中压力的变化不太敏感。

至于消耗在气门驱动机构上的损耗,在最大功率工况下所占比例是很微小的。

3.驱动附属机构的功率消耗

这里所指的附属机构,主要是指为保证发功机工作所必不可少的部件总成,如冷却水泵总成(风冷发动机中则是冷却风扇)、机油泵、喷油泵、调速器等;而一些较次要的部件总成,如发电机、汽车制动用的空气压缩机、水箱风扇等,除非加以说明,一般不包括在内。

这些附属机构消耗的功率随发动机的转速和润滑油粘度的增加而增大,但与气缸压力无关•它仅占机械损失中一小部分。

4.流体摩擦损失

连杆、曲轴等零件在曲轴箱内高速运动时,为克服油雾、空气阻力及曲轴箱通风等将消耗一部分功,但其数值是很微小的。

5.驱动扫气泵及增压器的损失

在二冲程或机械增压发动机中,还要加上对进气进行压缩而带来的损失。

上述诸损失中,可将1〜4项损失之和视作发动机的内部摩接损失,并以Pf

表示其损耗的功率,扫气泵或增压器所消耗的功率为Pb,因此,发动机的机械摩

擦损失功率可表示为

PmPfPB

(2—29)

在公式Pm=Pi—Pe中,相当于泵气损失功率的Pp已经在计算Pi时扣除了,因此就定义而言,这部分功率没有包括在Pm项中的必要,但是在测定中要把Pf和Pp分开是很困难的,所以往住用以下两个公式表示高速发动机中的摩擦损失

PmPfPpPb(2—30)

或PmmPfPpPb(2—31)

图2—4以平均压力表示了一非增压发动机机械损失各组成部分的分配情况,可见其中活塞和活塞环的摩擦损失所占的比例最大。

据统计,一般发动机中机械损失功率Pm的分配大致为:

活塞和活塞环的摩擦损失(45〜65)%Pm

整个活塞连杆曲轴机构中的摩擦损失(60〜75)%Pm

附属机构的驱动损失

(10〜20)%Pm

气门机构的驱动损失(2〜3)%Pm

图2』非堆压发功珂中机挾損曼酱组威部侍隱活專甲均At%的变叱

$—.锁%橫氏&一常睪;了?

M—竄厲机料弄动牴蛍F—覧"堆京

泵气损失

(10〜20)%Pm

图2—5表示了一般发动机pmm的范围。

二、机械损失的测定

机械损失的测定方法有好几种,但要借以获得较精确的数值还是困难的,有待于不断改进。

1.示功图法

运用各种示功器录取气缸的示功图,从中算出Pi值,从测功器和转速计读数中测出发动机的有效功率,从而可以算出Pm,Tjm及pmm值,这种直接测定方法是在真实的试验工况下进行的,从理论上讲也完全符合机械损失的定义,但试验结果的正确程度住往决定于示功图测录的正确程度,其中最大的误差来源于p一©图或p一V图上活塞上止点位置不易正确地确定。

此外,在多缸发动机中,各个气缸多少存在着一定的不均匀性,而在试验中往往只测录一个气缸的示功图用以代表其他各缸,这也会引起一定的误差,因此,示功图法一般用于当上止点位置能得到精确校正时才能取得较满意的结果。

2.倒拖法

这种方法在具有电力测功器的试验条件下方可进行。

试验时,发动机与电力测功器相连,当发动机以给定工况稳定运行,冷却水、机油温度到达正常数值时,切断对发动机的供油,将电力测功器转换为电动机,以给定转速倒拖发功机,并且维持冷却水和机油温度不变,这样测得的倒拖功率即为发动机在该工况下的机

械损失功率。

与实际运行情况相比,首先,气缸内不进行燃烧过程,作用在活塞上的气体压力在膨张行程中大幅度下降,使活塞、连杆、曲轴的摩擦损失有所减少;其次,按这种方法求出的摩擦功率中含有不应该有的Pp这一项,且由于排气过程中温度低、密度大,使Pp比实际的还大;再次,倒拖在膨胀、压缩行程中,由了充量向气缸壁的传热损失,以致于P一V图上膨胀线和压缩线不重合而处于它的下方,出现了图2—6上所示的负功面积。

实际上,在测量该工况的有效功率时,这部

分传热损失已被考虑在内。

这三种因素的综合结果是:

倒拖时所消耗的功率要超过柴油机在给定工况工作时的实际机械损失,在低压缩比发动机中,误差大约为5%,在高压缩比发动机中,误差有时可高达(15—20)%,因而此方法在测定汽油机机械损失时得到较广泛的应用。

3.火缸法

此法仅适用于多缸发动机。

当内燃机调整到给定工况稳定工作后,先测出其有效功率之后在喷油泵齿条位置或节气门不变的情况下,停止向某一气缸供油或点火。

并用减少制动力矩的办法迅速将转速恢复到原来的数值,并重新测定其有效功率Pe这样,如果灭缸后其他各缸的工作情况和发动机机械损失没有变化,则被熄灭的气缸原来所发出的指示功率(Pi)x为

(2—32)

(R)x(PePe)x

依次将各缸灭火,最后可以从各缸指示功率

的总和中求得整台发功机的指示功率Pi

i

P(PePe)x

(2—33)

x1-.■■■-.1

然后可以求出Pm和rm。

采用这种方法时,只要停止一缸的燃烧不致引起进、排气系统的异常变化,如排气管结构不致因一个气缸灭火而引起足以破坏其他气缸换气规律和充量系数的排气压力波的情况下就会相当准确,其误差在5%以下。

对于

汽油机,由于进气情况的改变,往往得不到正确的结果。

4.油耗线法

由公式(2—6)可导出

/1in»i1>

36^5…英发踰机的轨鱸捉炎』鬥压力P讪的范謝

两式相除,得

式小,Pme为平均有效压力。

图2—7为柴油机在转速不变的情况下进行负荷特性试验(详见第八章),求出发动机在给定转速下,每小时燃油消耗量与平均有效压力的关系曲线。

如果把燃油消耗量曲线延长并求出其与横坐标轴的交点,就可以求得pmm值。

这个方法虽然只是近似的方法,但只要在低负荷附近,燃油消耗量曲线为直线就相当可靠,即使没有电力测功器和示功器也能进行测定。

但是,这种方法不适用于用节气门调节功率的汽油机。

当测得其pmm值后,其机械效率可近似地用下式估算

Pme

Pmepmm

Pmm

pmepmm

Bo

B

^2-7用油耳握植求奄和梆的『"傅

式中,B可取某一常用工况的数值。

在以上所介绍的几种测定机械效率的方法中,倒拖法只能用于配有电力

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1