buck变换器设计.docx

上传人:b****6 文档编号:8870741 上传时间:2023-02-02 格式:DOCX 页数:21 大小:1.02MB
下载 相关 举报
buck变换器设计.docx_第1页
第1页 / 共21页
buck变换器设计.docx_第2页
第2页 / 共21页
buck变换器设计.docx_第3页
第3页 / 共21页
buck变换器设计.docx_第4页
第4页 / 共21页
buck变换器设计.docx_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

buck变换器设计.docx

《buck变换器设计.docx》由会员分享,可在线阅读,更多相关《buck变换器设计.docx(21页珍藏版)》请在冰豆网上搜索。

buck变换器设计.docx

buck变换器设计

电力电子技术课程设计

题目Buck变换器设计

学院计算机与信息科学学院

专业自动化

年级2012级

学号222012321042094

姓名郑继伟

同组人付镜锋

指导教师何强黄巧莉

成绩

2014年07月26日

Buck变换器设计

1引言

直流-直流变流器(DC-DCConverter)的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。

直接直流变流电路为称斩波电路(DCChopper),它的功能是将直流电变为另一固定电压或可调电压的直流电,一般是指直接电变为另一直流电,这种情况下输入与输出之间不隔离。

间接直流变流电路是在直流变流电路中增加了交流环节,在交流环节中通常采用变压器实现输入输出间的隔离,因此也称带隔离的直流-直流变流电路或直-交-直电路。

降压斩波器的原理是:

在一个控制周期中,让V导通一段时间ton,由电源E向L、R、

M供电,在此期间,uo=E。

然后使V关断一段时间

,此时电感L通过二极管VD向R

和M供电,uo=0。

一个周期内的平均电压

输出电压小于电源电压,起到降压的作用[2]。

2PWM控制器设计

本组设计要求:

BuckDC/DC变换器。

电源电压Vs=12-18V,开关频率38kHz。

要求输出电压Vo=9V;电感电流不断流,需要完成完成闭环设计(实现补偿网络)和MOSFET的。

2.1PWM控制的基本原理[1]

PWM控制就是对脉冲的宽度进行调制的技术。

即通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。

在采样控制理论中有一条重要的结论:

冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同,冲量即窄脉冲的面积。

效果基本相同是指环节的输出响应波形基本相同。

上述原理称为面积等效原理。

图1形状不同而冲量相同的各种窄脉冲

图2冲量相同的各种窄脉冲的响应波形

以正弦PWM控制为例。

把正弦半波分成N等份,就可把其看成是N个彼此相连的脉冲列所组成的波形。

这些脉冲宽度相等,都等于π/N,但幅值不等且脉冲顶部不是水平直线而是曲线,各脉冲幅值按正弦规律变化。

如果把上述脉冲列利用相同数量的等幅而不等宽的矩形脉冲代替,使矩形脉冲的中点和相应正弦波部分的中点重合,且使矩形脉冲和相应的正弦波部分面积(冲量)相等,就得到PWM波形。

各PWM脉冲的幅值相等而宽度是按正弦规律变化的。

根据面积等效原理,PWM波形和正弦半波是等效的。

对于正弦波的负半周,也可以用同样的方法得到PWM波形。

可见,所得到的PWM波形和期望得到的正弦波等效[2]。

图3用PWM波形代替正弦波

 

2.2TL494的时序

当锯齿波电平<死区时间控制电平时,死区时间比较器输出高电平。

当锯齿波电平<反馈/PWM输入电平时,PWM比较器输出高电平。

死区时间控制电压和反馈/PWM输入电压,二者中较高的电平控制触发器时钟宽度。

当输出控制电压=H时,Q和时钟信号均为0时,Q1基极获高电平导通,/Q和时钟信号均为0时,Q2基极获高电平导通,两管轮流导通,称为推挽工作方式。

当输出控制电压=L时,时钟信号为0时,Q1和Q2基极获高电平导通,两管同时导通,称为单端工作方式。

图4TL494时序图

2.3控制电路设计

PWM控制芯片TL494是频率固定的PWM控制器,主要为开关电源控制器而设计。

其具有:

【2】

完整的脉冲宽度调制控制电路

片上的振荡器可以工作在主动模式和被动模式

片上集成误差放大器

片上集成5.0V基准电压

可调整的死区时间控制

输出晶体管输出和灌入电流可达500mA

输出控制可用于推挽式和单端式

低压锁定

控制电路使用PWM控制芯片TL494来产生开关控制信号。

其原理图如下:

图5PWM控制原理图和工作波形

图6TL494内部框图

图7PWM控制电路接线图

 

表1PWM控制电路器件清单

序号名称数量备注

116脚IC插座1

2CT电容1682

3电位器2

4死区电阻15.1k

512号引脚电容1104

612脚与7脚去耦电容1电解电容

用以上器件,将PWM控制电路焊接完毕之后,调试过程中发现,不管如何调节电位器RT,开关频率始终在几百Hz,距离要求的38kHz相差甚远。

便怀疑是焊接过程出现了问题,用万用表检查各个触点,发现与6号脚连接的电位器的中间端应该接地,却接在了电源线上面,修正了这一错误之后。

电路运行正常。

调试电路,得到TL494芯片的5号脚出现锯齿波,9和10脚出现方波。

由本组实验要求,开关频率为38kHz,调节6号脚的电位器直至开关频率为38kHz。

图8方波

3buck变换器主电路设计

3.1主电路分析

图9主电路开环控制图

(1)

(2)

将最小电流值取0.5A,电源电压取18V。

通过

(1)

(2)两公式求得Lmin=164uH

又根据领的磁环尺寸得知,其:

AL=93

(3)

Nmin=29

计算得知,最少需缠绕漆包线29圈,实际缠绕过程中,为了使电感尽可能地大一些,提高实验的成功率,缠绕了59圈。

表2电感参数表

磁环型号ALNN实际理论电感实测电感

KT106-26932959164uH332.5uH

表3开环控制参数表

名称数值型号

CT6.67nF682

RT4.76kΩEOST

二极管VDSR2100

MOSFETIRF530N

驱动电阻Rg30Ω5W30J

滤波电容1977uFLXZ

去耦电容Bb45uFS7C

用以上元器件将开环控制电路焊接完毕之后,经过调试未发现问题,顺利测出了开环的各项数据,通过调节电位器W1,改变占空比,测得开环情况下,各数据如下表所示:

表4开环测试表

输入电压占空比3号脚电压(v)理论输出电压(v)实际输出电压(v)

18v03.500.00.07

18v0.053.380.90.53

18v0.13.291.81.11

18v0.32.845.43.71

18v0.52.159.06.66

18v0.71.6312.69.57

18v0.81.4114.410.76

18v最大0.715.611.92

 

3.2反馈回路设计

系统框图如下:

图10Buck变换器系统框图

主电路图如下:

图11主电路图

整个Buck电路包括Gc(s)补偿器,Gm(s)PWM控制器,Gvd(s)开环传递函数和H(s)反馈回路。

给定量R(s)(既TL494芯片2号脚电位器所对应电压)与反馈量H(s)(既与

比较产生的偏差通过bode图法得到控制器Gc(s)校正后来调节PWM控制器的波形的占空比,当占空比发生变化时,输出电压

即作出相应的调整,来消除偏差。

降压变压器闭环连接电路图为:

图12反馈回路和补偿器

反馈回路既H(s)取0.164,既

为0.164。

取Ry为10K欧姆,Rx为51K欧姆。

一端接地。

4buck变换器控制器设计

4.1系统分析

把TL494芯片占空比调到最大(调节2号脚电位器,当占空比恰好变小那刻)5号脚锯齿波所对应的峰值电压即为实验所需数据Vm的值,实验测得为3V。

 

开环下,传递函数Gvd为:

(4)

带入数据得:

(5)

原始回路增益函数

为:

(6)

带入数据得:

(7)

用MATLAB得开环下系统的伯德图为:

图12开环传递函数

的伯德图

由图很容易知道,此系统不稳定,需要加入控制器,使系统稳定。

4.2控制器设计

补偿器的传递函数为:

(8)

补偿网络有两个零点、三个极点。

零点为:

(9)

(10)

极点为:

为原点,

(11)

(12)

频率

之间的增益可近似为:

(13)

在频率

之间的增益则可近似为:

(15)

考虑达到抑制输出开关纹波的目的,增益交接频率取

为开关频率)

开环传函

的极点频率为

,将

两个零点的频率设计为开环传函

两个相近极点频率的

,则:

(16)

将补偿网络

两个极点设为

以减小输出的高频开关纹波。

(17)

(18)

根据已知条件使用MATLAB程序(源代码见附录)算得校正器Gc(s)各元件的值如下:

取R2=6*104欧姆

H(S)=0.164

算得:

R1=6000欧姆R3=25欧姆

C1=442e-09FC2=1e-9FC3=442e-9F

补偿器伯德图为:

图13补偿器的伯德图

 

加入补偿器后:

图12加入补偿器后系统的伯德图

相角裕度到达91.8度,幅值裕度到达30分贝,符合设计要求。

(所用MATLAB程序见附录)

4.3控制器实现

电位器W1的中间引脚(电位器的2号引脚)原来接TL4943号脚,现在变为接与2号脚相连的R1的输入端。

按照计算所得的数据连接电路图,调试运行良好。

在数据测试的过程中,不但测试了输出为9v,还测试了输出为8v,以及纹波电压等数据,详细见下表:

 

表5闭环测试表

电源电压(v)设定值(v)理论输出(v)实际输出(v)误差

121.4798.189.1%

131.4798.446.2%

141.4798.485.7%

151.4798.505.6%

161.4798.515.4%

171.4798.515.4%

181.4798.525.3%

191.4798.545.1%

141.1787.506.2%

151.1787.675.4%

161.1787.665.5%

171.1787.665.5%

181.1787.675.4%

纹波电压:

v=8mv

4.4缓冲电路设计

反馈回路完成之后,经过何老师验收通过。

之后,我们又做了MOSFET的RC缓冲电路。

缓冲电路是并联在半导体开关管上起保护和改善开关性能的电路。

作用如下:

【4】

1)降低或消除电压、电流尖峰;

(2)限制dl/dt或dV/dt;

(3)使系统运行在安全操作区(SOA)内;

(4)把开关功率损耗转移到电阻或有用负载上;

(5)降低总的开关损耗;

(6)通过钳位电压和电流振荡降低EMI。

通过查阅资料和计算,我们将一个1nF的电容和10欧姆的电阻串联起来之后,并联在MOSFET上。

做了缓冲前后的输出电压分别如图12和图13.可以看出,做了RC缓冲之后输出电压质量得到明显的提高。

图13缓冲之前输出电压波形

图14缓冲之后输出电压波形

4.5闭环控制原理

校正原理:

由于H(s)=0.164,故:

Rs=0.164*Vo.例如当2号脚电压为1V时,期望的输出电压即为6.10V。

当系统输入电压

调高或者调低时,输出电压Vo通过反馈回路与给定信号比较,产生的偏差输入校正器。

校正器通过积分作用产生补偿信号在输入PWM控制器,使PWM控制器的误差信号

做出相应变化。

当输入电压

调高时,

变低,开关信号的占空比随之变小,输出电压Vo保持不变。

当输入电压

调低时,

变高,开关信号的占空比随之变大,输出电压Vo保持不变。

接上反馈回路和补偿器后,调节2号脚电位器使给定电压为1.47V。

期望的输出电压为9v。

实际输出电压,由于MOSFET问题无法达到这个值。

比预设值偏小一点,详见闭环测试表。

5问题和总结

课程设计过程中遇到的问题及解决:

1.在焊接电路板时,为了避免电路的干扰问题,尽可能地减小杂散电感和杂散电容【4】接线要尽可能的短,元件要适当的远离。

2.在接线的过程中,为了方便检查,我们接地线用了统一的黑色,电源线用了红色。

而中间接线通用了黄色。

总结:

大二暑假,我们开始了电力电子课程设计课程。

此次电力电子课程设计我们组虽然完成的比较快,只用了一天半的时间,加上验收有仅仅花了两天多一点的时间。

但是,在这几天里,我学到了很多知识。

这次课程设计是对我们所学课程的一次检验,更是一次实际应用。

通过此次课程设计,使我们对“电力电子技术”还有“自动控制原理”等课程有了更深入的了解。

使我们不单单局限于书本上的知识,使我们学会如何将理论知识与实际应用结合起来。

更让我们看到了理论和实践的差距,锻炼了自己解决实际问题的能力。

在此次课程设计过程中,我遇到的问题还是很多的。

一开始拿到这个题目时,不知道如何下手,课本上涉及这部分的原理知识比较少,光靠自己所学的知识根本解决不了,我们去图书馆以及网站找了很多资料,包括焊接电路时的要点,以及要注意的东西。

电路调试的过程中,要学会保护自己电路板以及上面的器件,避免让其大电流长时间工作等等。

很多都是课本上没有的东西,但是在这次课程设计中发挥了很大的作用,也使我感觉特别充实。

然后在做设计的过程中我学到了很多东西,也知道了自己的不足之处,知道自己对以前所学过的知识理解得不深刻,掌握得不牢固,以后还要努力。

通过这次课设,发现了自己的不足和缺陷,也锻炼了自己将理论知识运用到实际中的能力,受益良多。

注:

验收文件分散在了论文中,没有单独列出。

参考文献:

[1]王兆安,刘进军.电力电子技术[M].北京.机械工业出版社,2010.1.

[2]李牛,MotorolaTL494手册.

[3]胡寿松.自动控制原理[M].北京.科学出版社,2007.6.

[4]杨凤彪,杨怡君,闫英敏,赵霞.RC缓冲电路的优化设计.2008.5

附录:

所用MATLAB程序代码如下:

clc;

clearall;

%LΪµç¸Ð£¬CΪÂ˲¨µçÈÝ£¬fsΪ¿ª¹ØƵÂÊ£¬VmΪ¾â³Ý²¨µÄ·åÖµ£¬VgΪÊäÈëµçѹ£¬RΪ¸ºÔصç×裬HΪ·´À¡ÏµÊý£¬VoΪÊä³öƽ¾ùµçѹ£¬IoΪÊä³öƽ¾ùµçÁ÷£¬

%dIΪÎƲ¨µçÁ÷£¬dI_maxΪ×î´óÎƲ¨µçÁ÷£¬duΪÎƲ¨µçѹ

L=332.5*10^(-6);C=6.67*10^(-9);fs=38*10^3;Vm=3;Vg=18;R=10;H=0.164;Vo=9;

C1=442*10^-9;

C2=1*10^-9;

C3=20*10^-9;

R1=6*10^3;

R2=6*10^3;

R3=25;

D=Vo/Vg;

G0=tf([Vg*H/Vm],[L*CL/R1])

figure

(1)

margin(G0);

dI=Vg/L/fs*D*(1-D);

Io=Vo/R

Io_min=Io-dI/2;

Io_max=Io+dI/2;

ifIo_min<=0.2

s1='×îСµçÁ÷Ϊ:

';

s2=num2str(Io_min);

s3=',';

s4='ʵ¼Êµç·¿ÉÄÜÒª¶ÏÁ÷ÁË';

s5=[s1,s2,s3,s4]

msgbox(s5,'×îСµçÁ÷')

end

dI_max=Vg/4/L/fs;%×î´óÎƲ¨µçÁ÷

du=Vo*(1-D)/8/L/C/fs/fs;%ÎƲ¨µçѹ

[Gm0,Pm0,Wcg0,Wc0]=margin(G0)%Wc0Ϊ¼ôÇÐƵÂÊ£¬Wc0/2/pi¾ÍÊÇÔöÒ潻ԽƵÂÊfg,Wcg0Ϊ´©Ô½ÆµÂÊ

num=conv([C1*R21],[(R1+R3)*C31]);

den1=conv([(C1+C2)*R10],[R3*C31]);

den=conv(den1,[R2*C1*C2/(C1+C2)1]);

Gc=tf(num,den);

figure

(2)

bode(Gc);

G=series(Gc,G0);

figure(3)

margin(G)

[Gm1,Pm1,Wcg1,Wc1]=margin(G);%Wc1Ϊ¼ôÇÐƵÂÊ£¬Wc1/2/pi¾ÍÊÇÔöÒ潻ԽƵÂÊfg,Wcg1Ϊ´©Ô½ÆµÂÊ

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 职业教育 > 职高对口

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1