蛋白质工程1.docx

上传人:b****6 文档编号:8861940 上传时间:2023-02-02 格式:DOCX 页数:19 大小:45.69KB
下载 相关 举报
蛋白质工程1.docx_第1页
第1页 / 共19页
蛋白质工程1.docx_第2页
第2页 / 共19页
蛋白质工程1.docx_第3页
第3页 / 共19页
蛋白质工程1.docx_第4页
第4页 / 共19页
蛋白质工程1.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

蛋白质工程1.docx

《蛋白质工程1.docx》由会员分享,可在线阅读,更多相关《蛋白质工程1.docx(19页珍藏版)》请在冰豆网上搜索。

蛋白质工程1.docx

蛋白质工程1

蛋白质工程

一、名词解释:

1.蛋白质工程:

是研究蛋白质结构和定点改造蛋白质结构的一门学科。

它利用基因工程手段,通过有控制的基因修饰和基因合成,对现有蛋白质进行定向改造,以期获得性能更加优良、更符合人类社会需要的蛋白质分子。

2.抗体:

指机体的免疫系统在抗原刺激下产生的可与相应抗原发生特异性结合的免疫球蛋白。

3.人-鼠嵌合抗体:

用鼠可变区和人恒定区融合形成的抗体。

4.人源化抗体:

将鼠杂交瘤抗体的超变区嫁接到人抗体上形成的抗体。

5.一级结构:

是多肽链中氨基酸残基从N-末端到C-末端的排列顺序及二硫键的位置。

6.二级结构:

是指多肽链主链借助氢键排列成特有的规则的重复构象。

7.超二级结构(结构模体):

一级顺序上相邻的二级结构在三维折叠中,彼此靠近、按特定的几何排布形成排列规则的、在空间结构上能够辨认的、可以同一结构模式出现在不同蛋白质中的二级结构组合体,称为结构模体。

8.发夹式β模体(或ββ组合单位):

两段相邻的反平行β链被一环链连接在一起构成的组合单位,其形貌与发夹相似,称为发夹式β模体。

9.希腊钥匙模体:

四段紧邻的反平行β链以特定的方式来回往复组合,其形貌类似于古希腊钥匙上特有的回形装饰纹,故称为希腊钥匙型模体。

10.β-α-β模体:

是序列上连续、相邻的两股平行β链和一段α螺旋连接而形成的组合。

11.结构域:

二级结构和结构模体以特定的方式组织连接,在蛋白质分子中形成两个或多个在空间上可以明显区分的三级折叠实体,称为结构域。

12.三级结构:

在二级结构、结构模体的基础上,进一步盘曲、折叠形成的,包括主链、侧链在内的所有原子和基团的空间排布。

13.四级结构:

是指在多条肽链组成的一个蛋白质分子中,各亚单位在寡聚蛋白质中的空间排布及亚单位间的相互作用。

14.优势构象:

任何氨基酸侧链中的组成基团都可以绕着其间的C-C单键旋转,从而产生各种不同的构象。

AA分子的各种构象异构体并不是平均分布的,总是以其最稳定的构象为主要的存在形式即为优势构象。

15.交错构象:

是能量上最有利的排布,在这种构象中,一个碳原子的取代基正好处于另一个碳原子的两个取代基之间。

16.旋转异构体:

大多数氨基酸残基的侧链都有一种或少数几种交错构象作为优势构象最经常出现在天然蛋白质中,称旋转异构体。

17.肽键:

由一个氨基酸的α-COOH与另一个氨基酸的α-NH2脱水缩合形成的共价键(或酰胺键)。

肽键具有局部双键性质,其键长比一般的C-N单键短,因此肽键不能旋转。

肽键有反式(trans)和顺式(cis)两种构型。

18.肽:

通过肽键将氨基酸连接在一起而形成的链状化合物。

19.构型:

是一个分子中原子的特定空间排布。

当一种构型改变为另一种构型时必须有共价键的断裂和重新形成。

20.构象:

是组成分子的原子或基团绕单键旋转而形成的不同空间排布。

21.肽单位:

由于肽键具有部分双键性质,肽键连接的基团处于同一平面,具有确定的键长和键角,是多肽链中的刚性结构,称为肽单位(或肽平面)。

22.多肽主链:

有序连接的肽单位就是多肽链的主链。

23.扭角:

由4个原子(或基团)组成的系统投影在与B-C键正交的平面上,A-B键投影与C-D键投影之间的夹角称为扭角。

(这个角度也可视为A-B-C决定的平面与B-C-D决定的平面间的夹角,故也称为双面角)

24.拉氏构象图:

Ramachandran根据蛋白质中非键合原子间的最小接触距离,确定了哪些成对二面角(φ,ψ)所规定的两个相邻肽单位的构象是允许的,哪些是不允许的,并且以φ为横坐标,以ψ为纵坐标,在坐标图上标出,该坐标图称拉氏构象图。

25.偶极子:

大小相等符号相反的两个电荷组成的体系。

26.偶极矩(μ):

正、负电荷中心间的距离(r)和电荷中心所带电量(q)的乘积。

μ=r×q。

它是一个矢量,方向规定为从正电中心指向负电中心。

27.疏水内核:

是指蛋白质分子内部的疏水侧链紧密堆积而构成的疏水区域。

28.疏水作用:

是指蛋白质疏水基团彼此靠近、聚集,以避开水的现象。

29.β层:

两条或多条伸展的β链侧向聚集,通过相邻肽链主链上的N-H与C=O之间有规则的氢键连接形成的锯齿状片层结构。

30.混合型β层:

即一部分以平行方式排布,而另一部分以反平行方式排布。

31.环肽链:

在蛋白质的三维结构中,连接相对刚性的α螺旋和β层组合的环状肽链,称环肽链(loop)。

环肽链常具有相当不同的长度和形貌(即构象的灵恬性),并具有较大的构象柔性。

是蛋白质结构的另一类基本组件。

回折结构的基本特征是使其所连接的肽链发生180°的急转弯。

32.β转折:

是由4个氨基酸残基[i~(i+3)]顺序连接的,使肽链弯折180°的特殊构象。

33.γ转折:

由三个氨基酸残基构成的,使肽链弯折180°的构象。

34.β发夹:

通过一段短的环链将两条相邻的β链连接在一起的结构,称为β发夹或发夹结构。

35.β-α-β模体:

是序列上连续、相邻的两股平行β链和一段α螺旋连接而形成的组合。

蛋白质折叠:

体内新生的多肽链或体外变性的多肽链的一维线性氨基酸序列转化为具有特征三维结构的活性蛋白质的过程。

36.分子伴侣:

是一类在细胞内能帮助新生肽链正确折叠、组装成为具有特定空间结构和生物活性功能的蛋白质,而本身不作为最终功能蛋白分子组成成分的分子。

37.同源蛋白:

是指不同生物体中表现功能相同或相似,在序列上具有显著相似性的两个蛋白质。

38.“EF”手”:

在小白蛋白的结构中,钙与HTH模体的结合方式与右手三指握球相似,构成模体的两段螺旋在整体结构中命名为E和F,故这一模体也称为“EF手”。

39.遗传密码:

DNA(或mRNA)中的核苷酸序列与多肽链中氨基酸序列之间的对应关系称为遗传密码。

40.密码子(codon):

mRNA上每3个相邻的核苷酸编码多肽链中的一个氨基酸,这三个核苷酸就称为一个密码子或三联体密码。

41.基因:

含特定遗传信息的核苷酸序列,是遗传物质的最小功能单位。

即产生一条多肽链或功能RNA(rRNA、mRNA等)所必需的全部核苷酸序列。

42.蛋白质折叠:

体内新生的多肽链或体外变性的多肽链的一维线性氨基酸序列转化为具有特征三维结构的活性蛋白质的过程。

43.蛋白折叠的动力学说:

在蛋白折叠途径中存在着某个或某些能垒,阻碍蛋白最稳定分子构象的获得,从而使得蛋白质结构处在某种亚稳态。

44.在蛋白质正确折叠中最常出现的障碍:

①中间体通过外露疏水基团的聚合②不正确二硫键的形成③脯氨酸残基的异构化

45.折叠中间体:

在蛋白质从变性态折叠成天然态的过程中,通常要经历若干个中间的分子构象状态,即蛋白折叠中间体,也叫做部分折叠态。

熔球态是折叠的中间体,疏水侧链内埋是重要驱动力。

46.熔球体:

在折叠途径中第一个可观测的中间体就是从柔性无序的未折叠多肽链卷折成局部有组织的球状态,称为熔球体。

47.蛋白质分子设计:

为了获得具有特定功能的蛋白质,在分子水平上对蛋白质的结构进行改造,甚至构建具有特定结构的蛋白质。

48.分子病:

由于遗传基因突变导致蛋白质分子一级结构中的某些氨基酸残基被更换所造成的一种遗传病。

49.突变的加和性原则:

分子中多重突变的效应等于单一突变效应之和。

50.分子剪裁:

指在对天然蛋白质的改造中替换1个肽段或1个结构域。

51.最小化途径:

把全新蛋白质设计的复杂性简化为几个涉及天然蛋白稳定性的关键特征,然后优化这些特征。

52.

53.

54.

55.

56.

57.

58.

59.

二、填空:

1.1985年Wells证明若用其它氨基酸取代枯草杆菌蛋白酶中222位的Met(甲硫氨酸),可以提高酶的氧化稳定性而保持高催化活性。

2.将枯草杆菌蛋白酶中与酶活性部位有关的218位的Asn(天冬酰胺)变成Ser(丝氨酸),则酶在65℃的稳定性显著增加。

3.酶的特性:

高效性、专一性、反应条件温和、可调控性、辅因子的作用。

4.稳定蛋白质空间构象的主要因素:

蛋白质分子众多基团间的相互作用。

5.蛋白质特定的空间构象由蛋白质一级结构中某一个或某一段氨基酸序列决定。

6.氨基酸是蛋白质结构的化学基本组件。

7.具有独特的三维结构是功能蛋白质分子最基本的属性。

氨基酸是蛋白质结构的化学基本组件。

8.蛋白质分子结构的基本建筑模块是肽单位和侧链基团。

9.拉氏构象图一直广泛用于鉴定实验测定的和计算机模型建造的各种蛋白质结构的合理性。

10.蛋白质工程的基本困难是:

从预期结构到适配序列

11.肽酰脯氨酰异构酶可以催化提高脯氨酸肽键异构化过程的速率,使折叠得以顺利进行。

12.“对位排列”是一种比较序列相似性的方法。

衡量序列相似性的指标有“一致性百分数”、“相似性分值”、“概率分值”。

13.分子伴侣可以结合未折叠的、部分折叠和折叠不正确的蛋白质。

14.蛋白质纯度的鉴定通常采用物理化学的方法,如电泳法、超速离心沉降法、层析法、分光光度法等。

15.蛋白质的分子设计包括:

对已有蛋白质的分子改造,亦称蛋白质的理性设计(或改造);设计尚未在自然界中发现的、具有全新结构和功能的蛋白质,亦称蛋白质的从头设计。

16.抗体的可变结构域可以分为超变区或称互补性决定区(CDRs)和变化性较少的骨架区,而与抗原的结合是由超变区决定的。

17.自然界唯一用于交叉连接的方法是二硫键.

18.线性肽折叠形成独特三维结构的主要障碍:

构象熵。

需要精心设计一系列的相互作用才能稳定其结构。

19.组合库设计应考虑的两个问题是:

①核心问题:

埋藏疏水部分,优化疏水核。

②优化二级结构单元间的界面。

20.基因突变分为:

①定位突变(或位点特异性突变)②随机突变。

21.

22。

23.

24.

25.

三、简答:

1.蛋白质工程研究的主要内容:

(1)利用已知蛋白质一级结构的信息作应用研究。

(2)从混杂变异体库中筛选和选择具有一定结构—功能关系的蛋白质。

(3)定量蛋白质结构与功能关系的研究。

(4)根据已知结构—功能的关系人工改造蛋白质。

该部分的主要研究内容:

①通过改变蛋白质的活性部位,提高其生物功效及独立工作的能力。

②通过改变蛋白质的结构顺序,提高其在极端条件(如酸、碱、热等)下的稳定性。

③通过改变蛋白质的结构顺序使其便于分离纯化。

2.妨碍酶开发利用的主要因素:

⑴酶含量甚少,传统方法分离纯化酶蛋白的成本太高;⑵酶蛋白分子结构的稳定性差;(过酸、过碱、高温、氧化等因素均可破坏其结构,使其丧失生物活性,因而在工业加工条件下,酶的半衰期短,利用率较低)。

⑶酶催化活性的最适pH值及底物专一性的范围较窄,与工业应用的要求有较大差距。

3.人源化抗体不再被人的免疫系统视为外源蛋白,由此消除人抗鼠抗体反应。

作用:

能支持人的效应器功能;在血浆中有较长的半寿期;降低了抗体的免疫原性。

4.试述蛋白质工程的应用:

(一)研究蛋白质结构与功能的关系

(二)改变蛋白质的特性:

①改变酶的特性;②改变蛋白质的活性(三)生产蛋白质和多肽类活性物质:

⑴提高酶的产量和创造新型酶蛋白质工程技术的兴起,为创建新型酶、改变酶的生理特性提供了强有力的工具。

⑵设计和研制新型抗体⑶设计和研制多肽及蛋白质类药物(四)设计合成全新蛋白质:

蛋白质结构、功能的设计和预测

5.影响鼠源单抗应用的限制因素:

⑴鼠源单克隆抗体只能对人体免疫系统效应器功能产生弱的激活作用。

⑵鼠源抗体在人血浆中的半寿期非常短。

⑶鼠源抗体对人而言是一种异体蛋白,容易引起人体的免疫反应,产生人抗鼠抗体(HAMA),这种人抗鼠抗体不但会中和鼠源抗体的活性,而且会使人产生包括高过敏性在内的各种严重的副反应。

6.a-氨基酸共同特点:

①与羧基相邻的α-碳原子上都有一个氨基,称为α–氨基酸。

②R表示侧链,各种氨基酸在结构上的差别仅在于侧链(R)的不同。

③除甘氨酸外,其它所有氨基酸分子中的α–碳原子都为不对称碳原子。

故:

氨基酸都具有旋光性。

④每种氨基酸都具有D-型和L-型两种立体异构体。

目前已知的天然蛋白质中的氨基酸都为L-型。

7.氨基酸的分类:

⑴疏水氨基酸(8种)Ala、Val、Leu、Ile、Met、Pro、Phe、Trp。

⑵极性氨基酸(8种)Ser、Thr、Asn、Gln、Cys、Tyr、Gly。

⑶荷电氨基酸(5种)包括:

Asp、Glu(荷负电)Lys、Arg、His(荷正电)

8.在α-螺旋链中,遇上pro螺旋就会中断,为什么?

答:

Pro残基的侧链与主链N原子形成共价键,使其丧失形成氢键的能力,并对α螺旋构象产生空间障碍。

因此,除螺旋的第一圈外,α螺旋中凡有Pro出现的地方就会发生弯折。

9.为什么在蛋白质中脯氨酸顺式肽键的出现概率要远高于其他氨基酸?

答:

脯氨酸顺式肽键与反式肽键的能量比为1:

4。

因此,脯氨酸在蛋白质中存在反式和顺式两种肽键,而非脯氨酸顺式肽键在天然蛋白质中很少出现,

10.怎样预测一段已知α螺旋是否具有两亲性?

答:

螺旋转轮法,将组成螺旋的氨基酸按100°间隔(360°/3.6个氨基酸)标在螺旋转轮线上,根据侧链在螺旋表面的分布就可以判断该α螺旋是否具有两亲性。

两亲性的α螺旋通常变现为在螺旋转轮线的一侧集中分布疏水氨基酸,而在另一侧集中分布有荷电氨基酸(亲水氨基酸)

11.强烈倾向于和非常不利于形成α螺旋的AA残基有哪些?

答:

⑴强烈倾向于形成α螺旋的AA残基有:

Ala、Glu、Leu和Met。

(Ala、Leu、Met是非极性AA,Glu是荷电AA)⑵非常不利于α螺旋形成的AA残基有:

Pro、Gly、Tyr和Ser(Pro是非极性AA,Gly、Tyr、Ser是极性AA)

12.β层与α-螺旋结构的区别:

①α螺旋结构的肽链是卷曲的棒状结构,而β层结构的肽链几乎是完全伸展的一种折叠形式。

②α螺旋是由一条多肽链在序列上相近的连续区构成。

β层则是由一条多肽链在序列上离得很远的(分子内)或不同多肽链(分子间)区域(即β链)组合而成的。

③α螺旋在链内形成氢键;β层在相邻β链间形成链间氢键。

④α螺旋有左手和右手两种类型;β层有β层平行、反平行和混合β层三种。

⑤:

α螺旋的氨基酸侧链位于螺旋的外侧;β层的氨基酸侧链交替分布在片层的上下两侧。

13.蛋白质空间结构的基本组件有哪些?

环肽链包括哪些结构?

β凸起的类型有哪些?

答:

⑴基本组件:

①α-螺旋②β层(平行β层/反平行β层/混合β层)③环肽链(回折/β发夹/β凸起/Ω环/无规则卷曲)

⑵环肽链包括:

①回折:

a.β转折(也称β转角,是最常见的回折结构)b.γ转折.②β发夹③β凸起(β-bulge):

标准型、G1型、宽型、GX型。

④Ω环

14.稳定蛋白质三维结构的作用力有哪些?

答:

①疏水作用:

是指蛋白质疏水基团彼此靠近、聚集,以避开水的现象。

②氢键和范德华力:

范德华力包括吸引和排斥两种相互作用力,只有当两个非极性残基间处于一定距离时,作用力才能达到最大。

氢键是特殊的分子间或分子内的作用力。

它是由极性很强的共价键(A-H)上的氢原子跟另一个键上电负性很强、原子半径较小的B原子(如F、O、N等)的孤对电子之间相互吸引而成的一种键(A-H…B)。

③共价交联和离子相互作用④配位键:

两个原子之间有单方面提供共用电子对形成的共价键。

蛋白质中的金属离子往往以配位键与蛋白质连接。

15.按结构域可将蛋白质分为哪几类?

答:

①α型结构:

主要由α螺旋组成。

如:

肌红蛋白、血红蛋白等。

②β型结构:

主要由反平行β层构成。

如:

丝氨酸属水解酶、免疫球蛋白A等。

③α/β型结构:

主要是β-α-β模体的组合。

如:

乳酸脱氢酶、醇脱氢酶等。

④α+β型结构:

既含α螺旋又含β层,但α螺旋与β层在空间上彼此不混杂,分别处于分子的不同部位,有时α螺旋和β层分别形成两个结构域。

如:

溶菌酶、嗜热菌蛋白酶、核酸酶等。

⑤无规则型/富含二硫键和金属离子型:

没有典型的二级结构,或所含二级结构的组成和组织没有明显的规律可循。

16.双层β螺旋的特征:

①每圈螺旋由2股β链与2段环链区相间构成。

②在形成结构域时这一基本结构单位重复3次,产生右手缠绕螺旋结构,中间形成疏水内核。

③包含两组重复的9残基共有序列。

17.TIM桶式折叠与上下折叠β桶有什么异同?

答:

⑴相同点:

①都是桶状结构②最后一股β链与第一股β链以氢键相连。

⑵不同点:

①模体不同:

TIM桶式折叠的模体是β-α-β;上下β桶是连续的β发夹模体。

②结构域不同:

TIM桶属于α/β型结构域,上下β桶是属于β型结构域。

③结构特征不同:

TIM桶是平行β链;上下β桶是反平行β链。

18.试述原核生物蛋白质生物合成的过程。

答:

(一)氨基酸的活化

(二)肽链合成的起始:

(1)原核生物蛋白质合成的起始:

①起始因子IF-3和IF-1结合于小亚基。

IF-3的作用是促使上一轮蛋白质合成的核糖体大小亚基解聚;IF-1的作用是与30S小亚基结合,增加起始复合物形成速度。

②小亚基16SrRNA序列与SD序列互补配对使小亚基结合于SD序列(真核生物无SD序列)③甲酰甲硫氨酰-tRNAffMet与起始密码AUG配对结合,与GTP结合的起始因子IF-2也结合上去,形成30S起始复合物④GTP水解释放能量,促使大亚基结合,形成完整的70S起始复合物,同时IF-1、IF-2、IF-3脱离复合体。

(2)真核生物起始阶段与原核生物的不同点:

①核糖体更大、更复杂②真核生物mRNA无SD序列,但有5′帽子和3′polyA尾巴③需要帽子结合蛋白(CBPs)促使小亚基与mRNA结合④起始因子为eIF,有10种以上(3)注意:

①启动过程需消耗1个GTP。

②复合体含3种RNA、蛋白质或(甲酰)甲硫氨酰,无DNA(三)肽链的延长:

进位、转肽、移位。

(四)肽链合成的终止与释放:

①终止因子RF1识别UAA、UAG或RF2识别UAA、UGA,进入核糖体A位。

②多肽链的释放③70S核糖体解离

19.多肽链生物合成的三个主要环节是什么?

答:

①基因携带规定氨基酸序列的核苷酸三联体遗传密码。

②双链DNA分子的遗传信息转录到单链信使RNA(mRNA)。

③mRNA在核糖体上的翻译。

20.遗传密码的性质:

①读码的连续性②由一种以上密码子编码同一个氨基酸的现象称为密码的简并性。

③密码的摆动性:

密码子的专一性主要由第1、2位碱基决定,第3位碱基有较大的灵活性;将第3位碱基的这一特性称为摆动性。

④密码子通用性与例外(1979年发现人线粒体中AUA、AUU不再编码Ile,而是起始密码;AGA、AGG不再编码Arg,而是终止密码;UGA不再是终止密码,而编码Trp)⑤起始密码子和终止密码子:

起始密码子:

AUG;终止密码子:

UAA、UAG、UGA

21.动力学途径会对蛋白质正确折叠产生哪些障碍?

答:

动力学上可以接受的构象,并不一定就是能量最低的构象,这就有可能使蛋白质在折叠过程中陷入具有高位垒的局部低能状态,使其达不到整体能量极小,从而不能形成正确的折叠结构。

①中间体通过外露疏水基团的聚合②不正确二硫键的形成③脯氨酸残基的异构化

22.帮助正确折叠的蛋白质和酶有哪些?

答:

①分子伴侣(molecularchaperone)②帮助正确二硫键形成的酶(二硫键形成酶/二硫键异构酶)③肽酰脯氨酰异构酶(催化脯氨酸残基Cis-trans异构化的酶)

23.原核细胞mRNA的特点:

①半衰期短、更新快②许多原核生物mRNA以多顺反子形式存在③AUG作为起始密码;AUG上游7~12个核苷酸处有一被称为SD序列的保守区,16SrRNA3´-末端反向互补而使mRNA与核糖体结合。

24.真核细胞mRNA的结构特点:

(1)Poly(A)尾巴的功能:

①保护mRNA②提高了mRNA在细胞质中的稳定性

(2)帽子结构功能:

①保护mRNA(使mRNA免遭核酸酶的破坏)②参与肽链合成的起始,(被多肽链合成的起始因子所识别)③使mRNA能与核糖体小亚基结合并开始合成多肽链

25.氨酰-tRNA合成酶的特点:

(1)专一性:

氨酰-tRNA合成酶具有极高的专一性,每种氨基酸至少有一种对其专一的酶,这种酶既识别特异的氨基酸,也识别携带该氨基酸的特异tRNA,保证了AA与其特定tRNA的准确匹配。

(2)校对作用:

若前面(第1步)形成不正确的氨酰基-AMP-酶络合物,在氨酰-tRNA形成时,氨酰-tRNA合成酶的水解部位可以水解错误络合的氨基酸。

原核生物蛋白质合成的起始AA是甲酰甲硫氨酸真核生物的起始AA是甲硫氨酸

26.多肽链生物合成的三个主要环节:

①基因携带规定氨基酸序列的核苷酸三联体遗传密码。

②双链DNA分子的遗传信息转录到单链信使RNA(mRNA)。

③mRNA在核糖体上的翻译。

27.蛋白质折叠意义:

具有生物活性的蛋白质都具有特征性的三维结构,一旦这种三维结构遭到破坏,该蛋白质的功能活性也就丧失。

蛋白质工程研究从根本上说,就是从设定的功能出发,寻求特征的氨基酸序列,由此导出具有预期功能的蛋白质三维结构。

故也称反向生物学。

28.维系蛋白质结构及蛋白质折叠的动力:

①维系和稳定蛋白质三维结构的作用力为非共价相互作用力:

范德华力、静电相互作用力、氢键和疏水相互作用力。

②疏水相互作用力是启动蛋白质折叠中形成内部疏水核心的驱动力。

③与氢键形成有关的分子内部特定的排列是决定蛋白质结构特异性的重要因素。

④天然蛋白质稳定构象是在疏水相互作用存在的同时,最大限度满足氢键的形成而达到的能量最低状态。

29.蛋白质折叠的热力学基础:

(1)Anfinsen提出“热力学假说”:

一级结构决定天然构象。

(2)天然态蛋白质只有脆弱的稳定性。

(3)折叠态蛋白质和变性态蛋白质间的能量差主要由焓和熵两个因素产生:

①焓是由一条多肽链的非共价作用产生,包括疏水作用、氢键、离子键等。

②熵是多肽链产生有序性所需的能量。

30.蛋白质折叠动力学要解决的最主要问题:

①一维多肽链在水溶液中是如何折叠成二维乃至蛋白质的高级结构②蛋白质在作用时它的三维结构又是如何发挥其活性的?

31.帮助正确二硫键形成的有哪两种酶?

其作用是什么?

答:

①二硫键形成酶(Dsb):

催化二硫键的正确形成。

①二硫键异构酶(PDI):

可以有效防止二硫键的错配和分子间聚合。

能使错配的二硫键异构化,转化为天然结构高活性构象蛋白。

32.改变蛋白质结构的途径:

①同源蛋白模建②突变一系列有结构倾向的氨基酸③从热力学第一定律出发设计蛋白质结构

33.增加蛋白质稳定的基本途径:

①降低折叠与非折叠的熵差:

a.引进二硫键:

减少非折叠构象的最有效方法b.替换Gly或增加Pro:

减少非折叠构象是提高稳定性的又一条有效途径。

②稳定α螺旋③填充疏水内核

34.蛋白质工程:

⑴蛋白质工程的基本目标:

以蛋白质分子的结构规律及其与生物功能的关系为基础,对现有蛋白质加以定向改造,设计、构建性能比天然蛋白质更加优良的新型蛋白质。

⑵蛋白质工程的最终目标:

是按热力学第一定律从头设计一个氨基酸序列,并使其能折叠成一个预期的结构,且具有期望的功能。

(3)蛋白质工程的基本途径:

从预期功能出发,设计期望结构,寻求与之相对应的氨基酸序列,再转译成核苷酸序列,获得预期功能蛋白。

(4)中心问题:

按期望结构寻求最适氨基酸序列。

35.同源模建:

⑴依据:

①序列高度相似的蛋白质具有相似的三维结构,蛋白质的三级结构比一级结构更保守。

②同源蛋白之间具有保守的结构内核(分子骨架),差异仅存在分子表面的回折区。

⑵前提条件:

①要模建的目标蛋白必须有一个或多个已知结构的蛋白质与模建的目标蛋白序列相似(一般要有30%,最低不低于25%)。

②已知结构的相关蛋白质可以作为模建的模板。

⑶基础:

①数据库:

蛋白质结构、序列数据②计算机:

工作站③分子模拟系统:

软件系统(4)步骤:

①从数据库中通过序列的“对位排列”搜寻具有目标序列的同源序列。

②根据同源序列蛋白质的结构,构建

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 入党转正申请

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1