《勾股定理》典型例题折叠问题.docx

上传人:b****6 文档编号:8726824 上传时间:2023-02-01 格式:DOCX 页数:14 大小:140.62KB
下载 相关 举报
《勾股定理》典型例题折叠问题.docx_第1页
第1页 / 共14页
《勾股定理》典型例题折叠问题.docx_第2页
第2页 / 共14页
《勾股定理》典型例题折叠问题.docx_第3页
第3页 / 共14页
《勾股定理》典型例题折叠问题.docx_第4页
第4页 / 共14页
《勾股定理》典型例题折叠问题.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

《勾股定理》典型例题折叠问题.docx

《《勾股定理》典型例题折叠问题.docx》由会员分享,可在线阅读,更多相关《《勾股定理》典型例题折叠问题.docx(14页珍藏版)》请在冰豆网上搜索。

《勾股定理》典型例题折叠问题.docx

《勾股定理》典型例题折叠问题

《勾股定理》典型例题

折叠问题

 

1、如图,有一张直角三角形纸片,两直角边AC=6,BC=8,将△ABC折叠,使点B与点A重合,折痕为DE,则CD等于()

A.

B.

C.

D.

2、如图所示,已知△ABC中,∠C=90°,AB的垂直平分线交BC于M,交AB于N,若AC=4,MB=2MC,求AB的长.

 

3、折叠矩形ABCD的一边AD,点D落在BC边上的点F处,已知AB=8CM,BC=10CM,求CF和EC。

 

4、如图,在长方形ABCD中,DC=5,在DC边上存在一点E,沿直线AE把△ABC折叠,使点D恰好在BC边上,设此点为F,若△ABF的面积为30,求折叠的△AED的面积

5、如图,矩形纸片ABCD的长AD=9㎝,宽AB=3㎝,将其折叠,使点D与点B重合,那么折叠后DE的长是多少?

 

6、如图,在长方形ABCD中,将

ABC沿AC对折至

AEC位置,CE与AD交于点F。

(1)试说明:

AF=FC;

(2)如果AB=3,BC=4,求AF的长

 

7、如图2所示,将长方形ABCD沿直线AE折叠,顶点D正好落在BC边上F点处,已知CE=3cm,AB=8cm,则图中阴影部分面积为_______.

 

8、如图2-3,把矩形ABCD沿直线BD向上折叠,使点C落在C′的位置上,已知AB=3,BC=7,重合部分△EBD的面积为________.

 

9、如图5,将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G。

如果M为CD边的中点,求证:

DE:

DM:

EM=3:

4:

5。

10、如图2-5,长方形ABCD中,AB=3,BC=4,若将该矩形折叠,使C点与A点重合,则折叠后痕迹EF的长为()

 

2-5

11、如图1-3-11,有一块塑料矩形模板ABCD,长为10cm,宽为4cm,将你手中足够大的直角三角板PHF的直角顶点P落在AD边上(不与A、D重合),在AD上适当移动三角板顶点P:

①能否使你的三角板两直角边分别通过点B与点C?

若能,请你求出这时AP的长;若不能,请说明理由.

②再次移动三角板位置,使三角板顶点P在AD上移动,直角边PH始终通过点B,另一直角边PF与DC的延长线交于点Q,与BC交于点E,能否使CE=2cm?

若能,请你求出这时AP的长;若不能,请你说明理由.

 

12、如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,若BE=12,CF=5.求线段EF的长。

13、如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m。

假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?

请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒?

 

《勾股定理》典型复习题

一、知识要点:

1、勾股定理

2、勾股定理的逆定理

3、勾股数

满足a2+b2=c2的三个正整数,称为勾股数。

注意:

①勾股数必须是正整数,不能是分数或小数。

②一组勾股数扩大相同的正整数倍后,仍是勾股数。

常见勾股数有:

(3,4,5 )(5,12,13 )( 6,8,10 ) ( 7,24,25 ) ( 8,15,17 )(9,12,15 ) 

4、最短距离问题:

主要运用的依据是两点之间线段最短。

二、考点剖析

考点一:

利用勾股定理求面积

1、求阴影部分面积:

(1)阴影部分是正方形;

(2)阴影部分是长方形;(3)阴影部分是半圆.

2.如图,以Rt△ABC的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.

3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S1、S2、S3,则它们之间的关系是()

A.S1-S2=S3B.S1+S2=S3C.S2+S3

4、四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,

求四边形ABCD的面积。

 

5、在直线

上依次摆放着七个正方形(如图4所示)。

已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是

=_____________。

考点二:

在直角三角形中,已知两边求第三边

1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为.

2.(易错题、注意分类的思想)已知直角三角形的两边长为3、2,则另一条边长的平方是

3、已知直角三角形两直角边长分别为5和12,求斜边上的高.

 

4、在Rt△ABC中,∠C=90°若a∶b=3∶4,c=10则Rt△ABC的面积是=________。

5、如果直角三角形的两直角边长分别为

,2n(n>1),那么它的斜边长是(  )

A、2nB、n+1C、n2-1D、

6、在Rt△ABC中,a,b,c为三边长,则下列关系中正确的是()

A.

B.

C.

7、已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是(  )

A、24

B、36

C、48

D、60

8、已知x、y为正数,且│x2-4│+(y2-3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()

A、5B、25C、7D、15

9、如图1所示,等腰

中,

是底边上的高,若

,求①AD的长;②ΔABC的面积.

考点三:

勾股数的应用、利用勾股定理逆定理判断三角形的形状、最大、最小角的问题

1、下列各组数据中的三个数,可作为三边长构成直角三角形的是()

A.4,5,6B.2,3,4C.11,12,13D.8,15,17

2、若线段a,b,c组成直角三角形,则它们的比为(  )

A、2∶3∶4B、3∶4∶6C、5∶12∶13D、4∶6∶7

3、下面的三角形中:

①△ABC中,∠C=∠A-∠B;

②△ABC中,∠A:

∠B:

∠C=1:

2:

3;

③△ABC中,a:

b:

c=3:

4:

5;

④△ABC中,三边长分别为8,15,17.

其中是直角三角形的个数有().A.1个B.2个C.3个D.4个

4、已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为(  )

A.直角三角形B.等腰三角形

5、将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()

A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形

6、若△ABC的三边长a,b,c满足

试判断△ABC的形状。

 考点四:

应用勾股定理解决楼梯上铺地毯问题

某楼梯的侧面视图如图3所示,其中

米,

,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为       .

考点五、利用列方程求线段的长(方程思想)

1、小强想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,你能帮他算出来吗?

 

2、一架长

的梯子,斜立在一竖起的墙上,梯子底端距离墙底

(如图),如果梯子的顶端沿墙下滑

,那么梯子底端将向左滑动米

 

3、在一棵树10m高的B处,有两只猴子,一只爬下树走到离树20m处的池塘A处;另外一只爬到树顶D处后直接跃到A外,距离以直线计算,如果两只猴子所经过的距离相等,试问这棵树有多高?

 

考点六:

折叠问题

1、如图,有一张直角三角形纸片,两直角边AC=6,BC=8,将△ABC折叠,使点c与点E重合,折痕为AD,则CD等于()

A.

B.

C.

D.

 

2、如图所示,已知△ABC中,∠C=90°,AB的垂直平分线交BC于M,交AB于N,若AC=4,MB=2MC,求AB的长.

3、折叠矩形ABCD的一边AD,点D落在BC边上的点F处,已知AB=8CM,BC=10CM,求CF和EC。

 

4、如图,在长方形ABCD中,DC=5,在DC边上存在一点E,沿直线AE把△ABC折叠,使点D恰好在BC边上,设此点为F,若△ABF的面积为30,求折叠的△AED的面积

5、如图,矩形纸片ABCD的长AD=9㎝,宽AB=3㎝,将其折叠,使点D与点B重合,那么折叠后DE的长是多少?

 

6、如图2所示,将长方形ABCD沿直线AE折叠,顶点D正好落在BC边上F点处,已知CE=3cm,AB=8cm,则图中阴影部分面积为_______.

 

7、如图2-3,把矩形ABCD沿直线BD向上折叠,使点C落在C′的位置上,已知AB=3,BC=7,重合部分△EBD的面积为________.

 

8、如图1-3-11,有一块塑料矩形模板ABCD,长为10cm,宽为4cm,将你手中足够大的直角三角板PHF的直角顶点P落在AD边上(不与A、D重合),在AD上适当移动三角板顶点P:

①能否使你的三角板两直角边分别通过点B与点C?

若能,请你求出这时AP的长;若不能,请说明理由.

②再次移动三角板位置,使三角板顶点P在AD上移动,直角边PH始终通过点B,另一直角边PF与DC的延长线交于点Q,与BC交于点E,能否使CE=2cm?

若能,请你求出这时AP的长;若不能,请你说明理由.

 

考点七:

与展开图有关的计算

1、如图,在棱长为1的正方体ABCD—A’B’C’D’的表面上,求从顶点A到顶点C’的最短距离.

 

2、如图一个圆柱,底圆周长6cm,高4cm,一只蚂蚁沿外壁爬行,要从A点爬到B点,则最少要爬行cm

 

考点八、网格问题

1、如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是()

A.0B.1C.2D.3

2、如图,正方形网格中的△ABC,若小方格边长为1,则△ABC是()

A.直角三角形

3、如图,小方格都是边长为1的正方形,则四边形ABCD的面积是()

A.25B.12.5C.9

(图1)(图2)(图3)

4、如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,以格点为顶点分别按下列要求画三角形:

①使三角形的三边长分别为3、

(在图甲中画一个即可);

②使三角形为钝角三角形且面积为4(在图乙中画一个即可).

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 理化生

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1