逻辑思维答案.docx
《逻辑思维答案.docx》由会员分享,可在线阅读,更多相关《逻辑思维答案.docx(24页珍藏版)》请在冰豆网上搜索。
逻辑思维答案
答案:
【1】
1、先把5升的灌满,倒在6升里,这时6升的壶里有5升水
2.再把5升的灌满,用5升的壶把6升的灌满,这时5升的壶里剩4升水
3.把6升的水倒掉,再把5升壶里剩余的水倒入6升的壶里,这时6升的壶里有4升水
4.把5升壶灌满,倒入6升的壶,5-2=3
【2】
把第二个满着的杯子里的水倒到第五个空着的杯子里
【3】
小黄。
因为小李是第一个出手的,他要解决的第一个人就会是
小林,这样就会保证自己的安全,因为如果小黄被解决,自己理所当然地会成为小林的目标,他也必定会被打死。
而小黄如果第一枪不打小林而去打小李,自己肯定会死(他命中较高,会成为接下来的神枪手小林的目标)。
他必定去尝试先打死小林。
那么30%
50%的几率是80%(第一回合小林的死亡率,但会有一点点偏差,毕竟相加了)。
那么第一回合小黄的死亡率是20%多一点点(小林的命中减去自己的死亡率)。
假设小林第一回合死了,就轮到小李打小黄了,那么小李的命中就变成了50%多一点点(自己的命中加上小黄的死亡率)。
这样就变成了小李小黄对决,
第二回合的小李的第一枪命中是50%,小黄也是。
可是如果拖下去的话占上风的自然就是小黄了,可能赢得也自然是小黄了。
至于策略我看大家都领悟了吧。
【4】
甲分三碗汤,乙选认为最多和最少的倒回灌里再平分到剩余的两个碗里,让丁先选,其次是甲,最后是乙
【5】
假如先前N个中没有重叠且边上的都超出桌子的边上且全都是紧靠着的.那么根据题意就可以有:
空隙个数Y=3N/23(自己推算)
每一个空都要一个圆来盖
桌面就一共有圆的数为:
YN=3N/23
=5N/23<=4N(除N=1外)
所以可以用4N个硬币完全覆盖.
【6】
用绳子围球一周后测绳长来计算半径(用纸筒套住球来测更准)
借助排水法测体积后计算半径
【7】
要两人才能做到,
先在平面上摆放一枚,再在这枚硬币的正面立着放两枚(这两枚是侧面接触的),这样,这三枚硬币之间形成一个三角形空隙。
剩下的两枚在空隙处交叉就行了,注意这两枚同样是平躺着,但可能需要翘起一定的角度。
【8】
方块5
【9】
经过第一轮,说明任何两个数都是不同的。
第二轮,前两个人没有猜出,说明任何一个数都不是其它数的两倍。
现在有了以下几个条件:
1.每个数大于02.两两不等3.任意一个数不是其他数的两倍。
每个数字可能是另两个之和或之差,第三个人能猜出144,必然根据前面三个条件排除了其中的一种可能。
假设:
是两个数之差,即x-y=144。
这时1(x,y>0)和2(x!
=y)都满足,所以要否定x+y必然要使3不满足,即x+y=2y,解得x=y,不成立(不然第一轮就可猜出),所以不是两数之差。
因此是两数之和,即x+y=144。
同理,这时1,2都满足,必然要使3不满足,即x-y=2y,两方程联立,可得x=108,y=36。
这两轮猜的顺序其实分别为这样:
第一轮(一号,二号),第二轮(三号,一号,二号)。
这样分大家在每轮结束时获得的信息是相同的(即前面的三个条件)。
那么就假设我们是C,来看看C是怎么做出来的:
C看到的是A的36和B的108,因为条件,两个数的和是第三个,那么自己要么是72要么是144(猜到这个是因为72的话,108就是36和72的和,144的话就是108和36的和。
这样子这句话看不懂的举手):
假设自己(C)是72的话,那么B在第二回合的时候就可以看出来,下面是如果C是72,B的思路:
这种情况下,B看到的就是A的36和C的72,那么他就可以猜自己,是36或者是108(猜到这个是因为36的话,36加36等于72,108的话就是36和108的和):
如果假设自己(B)头上是36,那么,C在第一回合的时候就可以看出来,下面是如果B是36,C的思路:
这种情况下,C看到的就是A的36和B的36,那么他就可以猜自己,是72或者是0(这个不再解释了):
如果假设自己(C)头上是0,那么,A在第一回合的时候就可以看出来,下面是如果C是0,A的思路:
这种情况下,A看到的就是B的36和C的0,那么他就可以猜自己,是36或者是36(这个不再解释了),那他可以一口报出自己头上的36。
(然后是逆推逆推逆推),现在A在第一回合没报出自己的36,C(在B的想象中)就可以知道自己头上不是0,如果其他和B的想法一样(指B头上是36),那么C在第一回合就可以报出自己的72。
现在C在第一回合没报出自己的36,B(在C的想象中)就可以知道自己头上不是36,如果其他和C的想法一样(指C头上是72),那么B在第二回合就可以报出自己的108。
现在B在第二回合没报出自己的108,C就可以知道自己头上不是72,那么C头上的唯一可能就是144了。
【10】
15%*80%/(85%×20%+15%*80%)
【11】
f(x)=(60-2x)*x,当x=15时,有最大值450。
1820元设是X公里处赚最多钱。
问题就成是求一个一元二次方程的最大值,求得是在15公里处赚钱最多,450元。
一共240公斤……
【12】
6种结果
大、中、小:
(2\30\68)(5\25\70)(8\20\72)(11\15\74)(14\10\76)(17\5\78)
【13】
因为1=5,所以5=1
【14】
本题可用递归算法,但时间复杂度为2的n次方,也可以用动态规划法,时间复杂度为n的平方,实现起来相对要简单得多,但最方便的就是直接运用公式:
排队的种数=(2n)!
/[n!
(n
1)!
]。
如果不考虑电影院能否找钱,那么一共有(2n)!
/[n!
n!
]种排队方法(即从2n个人中取出n个人的组合数),对于每一种排队方法,如果他会导致电影院无法找钱,则称为不合格的,这种的排队方法有(2n)!
/[(n-1)!
(n
1)!
](从2n个人中取出n-1个人的组合数)种,所以合格的排队种数就是(2n)!
/[n!
n!
]-(2n)!
/[(n-1)!
(n1)!
]
=(2n)!
/[n!
(n1)!
]。
至于为什么不合格数是(2n)!
/[(n-1)!
(n1)!
],说起来太复杂,这里就不讲了。
【15】
2元
【16】
M=5C得第二名
因为ABC三人得分共40分,三名得分都为正整数且不等,所以前三名得分最少为6分,40=5*8=4*10=2*20=1*20,不难得出项目数只能是5.即M=5.
A得分为22分,共5项,所以每项第一名得分只能是5,故A应得4个第一名一个第二名.22=5*42,第二名得2分,又B百米得第一,9=51111
所以跳高中只有C得第二名
B的5项共9分,其中百米第一5分,其它4项全是1分,9=51=111.即B除百米第一外全是第三,跳高第二必定是C所得
【17】
房子黄蓝红绿白
国籍挪威丹麦英国德国瑞士
饮料矿泉水茶牛奶咖啡啤酒
宠物猫马鸟鱼狗
香烟DUNHILL混合烟PALLMALLPRINCEBLUEMASTER
【18】
1 2 3 4 5
蓝房子 绿 黄 红 白
北京人 上海 香港 天津 成都
茅台酒 葡萄 矿泉水 茶 啤酒
豆腐 面条牛肉 比萨 鸡
健牌 希尔顿 万宝路 555 红塔山
马 狗 蛇 猫 鱼
【19】
A家先打:
55
B家如果打:
TT的话.
C家随便他吃不吃..
A家都不跟.(反正B家跟C家哪家有吃55的话,都不跟.除非A家88可以出就跟)
如果刚才是B家吃的话,就B家出牌:
你看.B家最多也出44然后C家吃他66.如果他是出两个99那地主也不跟!
;如果B家出单的话.地主还有一个2可以压!
(反正B家跟C家肯定是会打对子的!
)
照刚才那样.A家牌下面应该剩:
2KQJT97777663333
B家:
大王小王2AKQQJJ9855
C家:
22AAAKQJT99844
A家吃完88后.B家吃JJ(反正无论如何.都会打单的.)要是打单的话.A家就用2压.B家双王不可能会压吧.(即使压了也没事.)
A家用2压完后就打:
KQJT9
B家如果用双王吃的话.那等他出牌的时候.马上用3333吃他.如果B家没吃的话.C家会吃:
AKQJT
然后A家可以用3333压下AKQJT如果B家用双王吃的话.那正合我意了哈.!
A家反正只剩下777766了等他打什么..都用7777吃他.最后打66
【20】
先拿下第一楼的钻石,然后在每一楼把手中的钻石与那一楼的钻石相比较,如果那一楼的钻石比手中的钻石大的话那就把手中的钻石换成那一层的钻石。
(因为“只能拿一次”是在外文翻译过来的,所以是总共只能拿一次,还是每层只能拿一次?
无法知道。
但如果这个和“在稻田一直走,不能回头,请你捡出最大的一个稻穗”这样的题目一样的话,那么上面的就是正确答案!
)
【21】
假设这四个人分别为甲(1分钟)乙(2分钟)丙(5分钟)丁(10分钟)
第一次去:
甲和乙(2分钟)
第一次回:
甲(1分钟)
第二次去:
丙和丁(10分钟)
第二次回:
乙(2分钟)
第三次去:
甲和乙(2分钟)
总计:
17分钟
【22】
1/3
(因为你知道一共有两个小孩其中一个是女孩而你已知的那个女孩并不知道是她第一个孩子还是第二个孩子所以它的概率是1/3
如果题目换成已知第一个是女孩那么第二个是女孩的概率就是1/2了)
【23】
主要是因为如果是方的、长方的或椭圆的,盖子很容易掉进地下道!
但圆形的盖子嘛,就可以避免这种情况了。
另外、圆形的盖子可以节省材料,增大洞口面积,井盖及井座的强度增加不易轧坏。
【24】
1.天平一边放72=9克砝码,另一边放9克盐。
2.天平一边放7克砝码和刚才得到的9克盐,另一边放16克盐。
3.天平一边放刚才得到的16克盐和再刚才得到的9克盐,另一边放25克盐。
【25】
把第一块芯片与其它逐一对比,看看其它芯片对第一块芯片给出的是好是坏,如果给出是好的过半,那么说明这是好芯片,完毕。
如果给出的是坏的过半,说明第一块芯片是坏的,那么就要在那些在给出第一块芯片是坏的芯片中,重复上述步骤,直到找到好的芯片为止。
【26】
12个时可以找出那个是重还是轻,13个时只能找出是哪个球,轻重不知。
把球编为①②③④⑤⑥⑦⑧⑨⑩⑾⑿。
(13个时编号为⒀)
第一次称:
先把①②③④与⑤⑥⑦⑧放天平两边,
㈠如相等,说明特别球在剩下4个球中。
把①⑨与⑩⑾作第二次称量,
⒈如相等,说明⑿特别,把①与⑿作第三次称量即可判断是⑿是重还是轻
⒉如①⑨<⑩⑾说明要么是⑩⑾中有一个重的,要么⑨是轻的。
把⑩与⑾作第三次称量,如相等说明⑨轻,不等可找出谁是重球。
⒊如①⑨>⑩⑾说明要么是⑩⑾中有一个轻的,要么⑨是重的。
把⑩与⑾作第三次称量,如相等说明⑨重,不等可找出谁是轻球。
㈡如左边<右边,说明左边有轻的或右边有重的
把①②⑤与③④⑥做第二次称量
⒈如相等,说明⑦⑧中有一个重,把①与⑦作第三次称量即可判断是⑦与⑧中谁是重球
⒉如①②⑤<③④⑥说明要么是①②中有一个轻的,要么⑥是重的。
把①与②作第三次称量,如相等说明⑥重,不等可找出谁是轻球。
⒊如①②⑤>③④⑥说明要么是⑤是重的,要么③④中有一个是轻的。
把③与④作第三次称量,如相等说明⑤重,不等可找出谁是轻球。
㈢如左边>右边,参照㈡相反进行。
当13个球时,第㈠步以后如下进行。
把①⑨与⑩⑾作第二次称量,
⒈如相等,说明⑿⒀特别,把①与⑿作第三次称量即可判断是⑿还是⒀特别,但判断不了轻重了。
⒉不等的情况参见第㈠步的⒉⒊
【27】
首先求解原题。
每道题的答错人数为(次序不重要):
26,21,19,15,9
第3分布层:
答错3道题的最多人数为:
(262119159)/3=30
第2分布层:
答错2道题的最多人数为:
(2119159)/2=32
第1分布层:
答错1道题的最多人数为:
(19159)/1=43
Max_3=Min(30,32,43)=30。
因此答案为:
100-30=70。
其实,因为26小于30,所以在求出第一分布层后,就可以判断答案为70了。
要让及格的人数最少,就要做到两点:
1.不及格的人答对的题目尽量多,这样就减少了及格的人需要答对的题目的数量,也就只需要更少的及格的人
2.每个及格的人答对的题目数尽量多,这样也能减少及格的人数
由1得每个人都至少做对两道题目
由2得要把剩余的210道题目分给其中的70人:
210/3=70,让这70人全部题目都做对,而其它30人只做对了两道题
也很容易给出一个具体的实现方案:
让70人答对全部五道题,11人仅答对第一、二道题,10人仅答对第二、三道题,5人答对第三、四道题,4人仅答对第四、五道题
显然稍有变动都会使及格的人数上升。
所以最少及格人数就是70人!
【28】
十年可能包含2-3个闰年,3652或3653天。
1900年这个闰年就是28天,1898~1907这10年就是3651天,闰年如果是整百的倍数,如1800,1900,那么这个数必须是400的倍数才有29天,比如1900年2月有28天,2000年2月有29天。
【29】
下行是对上一行的解释所以新的应该是3个12个21个1:
312211
【30】
一,一根绳子从两头烧,烧完就是半个小时。
二,一根要一头烧,一根从两头烧,两头烧完的时候(30分),将剩下的一根另一端点着,烧尽就是45分钟。
再从两头点燃第三根,烧尽就是1时15分。
【31】
第一个瓶子拿出一片,第二个瓶子拿出四片,第三个拿出十六片,……第m个拿出n1的m-1次方片。
把所有这些药片放在一起称重量。
【32】
取出标着15便士的盒中的一个硬币,如果是银的说明这个盒是20便士的,如果是镍的说明这个盒是10便士的,再由每个盒的标签都是错误的可以推出其它两个盒里的东西。
【33】
最少10,最多130
见下表,表中蓝色部分服从2为底的指数函数规律,红色部分的数值均为其左边与左上角的两个数之和。
x
0123456789
x个点最多能把直线分成多少部分
12345678910
x条直线最多能把平面分成多少部分
1247111622293746
x个平面最多能把空间分成多少
【34】
第一步:
游到水池中心。
第二步:
从水池中心游到距中心R/4处,并始终保持鼠、水池中心、猫在一直线上。
第三步:
沿与中心相反方向的直线游3R/4就可以到达水池边,而猫沿圆周到达那里需要3.14R,所以捉不到老鼠。
【35】
表示为880,接下来,将一个大桶的水倒入小桶中,倒满,表示为853,(第2个大桶减3,小桶加3)则过程如下:
880——853:
将3斤给第1个人,变为850(此时4人分别有水3-0-0-0)
850——823:
将2斤给第2个人,变为803(此时4人分别有水3-2-0-0)
803——830——533——560——263——281:
将1斤给第1个人,变为280(此时4人分别有水4-2-0-0)
280——253——703——730——433——460——163:
将1斤给第3个人,变为063(此时4人分别有水4-2-1-0)
063——081:
将1斤给第4个人,变为080(此时4人分别有水4-2-1-1)
080——053——350——323:
将2斤给第2个人,将2个3斤分别给第3、4个人,(此时4人分别有水4-4-4-4)
【36】
7点x分:
(7x/60)/12=x/60x=7*60=420/11=38.2
第一次是7点38分,第二次是8点44分
【37】
马3600牛2800羊1600
【38】
100
【39】
砝码将以与猴子相同的速度上升,因为它们质量相同,受力也相同
【40】
旋转看速度,金的密度大,质量相同,所以金球的实际体积较小,因为外半径相同,所以金球的内半径较大,所以金球的转动惯量大,在相同的外加力矩之下,金球的角加速度较小,所以转得慢。
【41】
分成10+13两堆,然后翻转10的那堆
【42】
作图如下:
●●●●●●●●●C●●●●●●●●●●
●●
●●
●●
ACB
●●●
●●●
●●●
●B●A●
●●●
●●●●●●●●●●●●●●●●●●●●
答题完毕.
【43】
温度,先开一盏,足够长时间后关了,开另一盏,进屋看,亮的为后来开的,摸起来热的为先开的,剩下的一盏也就确定了。
四盏的情况:
设四个开关为ABCD,先开AB,足够长时间后关B开C,然后进屋,又热又亮为A,只热不亮为B,只亮不热为C,不亮不热为D。
【44】
1,改变赋值号.比如,-,=
2,注意质数.
3,可能把画面颠倒过来.
4,然后就可以去考虑更改其他数字更改了
247-217=30
【45】
如果轮到第四个海盗分配:
100,0
轮到第三个:
99,0,1
轮到第二个:
98,0,1,0
轮到第一个:
97,0,1,0,2,这就是第一个海盗的最佳方案。
【46】
第一个人选择17时最优的。
它有先动优势。
他确实有可能被逼死,后面的2、3、4号也想把1号逼死,但做不到(起码确定性逼死做不到)
可以看一下,如果第1个人选择21,他的信息时暴露给第2个人的,那么,1号就将自己暴露在一个非常不利的环境下,2-4号就会选择20,五号就会被迫在1-19中选择,则1、5号处死。
所以1号不会这样做,会选择一个更小的数。
1号选择一个<20的数后,2号没有动力选择一个偏离很大的数(因为这个游戏偏离大会死),只会选择
1或-1,取决于那个死的概率小一些,再考虑这些的时候,又必须逆向考虑,1号必须考虑2-4号的选择,2号必须考虑3、4号的选择,...
...只有5号没得选择,因为前面是只有连着的两个数(且表示为N,N
1),所以5号必死,他也非常明白这一点,会随机选择一个数,来决定整个游戏的命运,但决定不了他自己的命运。
下面决定的就是1号会选择一个什么数,他仍然不会选择一个太大或太小的数,因为那样仍然是自己处于不利的地位(2-4号肯定不会留情面的),100/6=16.7(为什么除以6?
因为5号会随机选择一个数,对1号来说要尽可能的靠近中央,2-4好也是如此,而且正因为2-4号如此,1号才如此...
...),最终必然是在16、17种选择的问题。
对16、17进行概率的计算之后,就得出了3个人选择17,第四个人选择16时,为均衡的状态,第4号虽然选择16不及前三个人选择17生存的机会大,但是若选择17则整个游戏的人必死(包括他自己)!
第3号没有动力选择16,因为计算概率可知生存机会不如17。
所以选择为17、17、17、16、X(1-33随机),1-3号生存机会最大。
【47】
这堆桃子至少有3121只。
第一只猴子扔掉1个,拿走624个,余2496个;
第二只猴子扔掉1个,拿走499个,余1996个;
第三只猴子扔掉1个,拿走399个,余1596个;
第四只猴子扔掉1个,拿走319个,余1276个;
第五只猴子扔掉1个,拿走255个,余4堆,每堆255个。
如果不考虑正负,-4为一解
考虑到要5个猴子分,假设分n次。
则题目的解:
5^n-4
本题为5^5-4=3121.
设共a个桃,剩下b个桃,则b=(4/5)((4/5)((4/5)((4/5)((4/5)(a-1)-1)-1)-1)-1)-1),即b=(1024a-8404)/3125
;a=3b853*(b4)/1024,而53跟1024不可约,则令b=1020可有最小解,得a=3121,设桃数x,得方程
4/5{4/5{4/5[4/5(x-1)-1]-1}-1}=5n
展开得
256x=3125n2101
故x=(3125n2101)/256=12n853*(n1)/256
因为53与256不可约,所以判断n=255有一解.x为整数,等于3121
【48】
这堆椰子最少有15621
第一个人给了猴子1个,藏了3124个,还剩12496个;
第二个人给了猴子1个,藏了2499个,还剩9996个;
第三个人给了猴子1个,藏了1999个,还剩7996个;
第四个人给了猴子1个,藏了1599个,还剩6396个;
第五个人给了猴子1个,藏了1279个,还剩5116个;
最后大家一起分成5份,每份1023个,多1个,给了猴子。
【49】
答案应该是9月1日。
1)首先分析这10组日期,经观察不难发现,只有6月7日和12月2日这两组日期的
日数是唯一的。
由此可知,如果小强得知的N是7或者2,那么他必定知道了老师的
生日。
2)再分析“小明说:
如果我不知道的话,小强肯定也不知道”,而该10组日期的
月数分别为3,6,9,12,而且都相应月的日期都有两组以上,所以小明得知M后
是不可能知道老师生日的。
3)进一步分析“小明说:
如果我不知道的话,小强肯定也不知道”,结合第2步
结论,可知小强得知N后也绝不可能知道。
4)结合第3和第1步,可以推断:
所有6月和12月的日期都不是老师的生日,因为
如果小明得知的M是6,而若小强的N==7,则小强就知道了老师的生日。
(由第
1步已经推出),同理,如果小明的M==12,若小强的N==2,则小强同样可以知道老师的生日。
即:
M不等于6和9。
现在只剩下“3月4日3月5日3月8日
9月1日
9月5日”五组日期。
而小强知道了,所以N不等于5(有3月5日和9月5日),此时,
小强的N∈(1,4,8)注:
此时N虽然有三种可能,但对于小强只要知道其中的
一种,就得出结论。
所以有“小强说:
本来我也不知道,但是现在我知道了”,
对于我们则还需要继续推理
至此,剩下的可能是“3月4日3月8日9月1日”
5)分析“小明说:
哦,那我也知道了”,说明M==9,N==1,(N==5已经被排除,3月份的有两组)
【50】
如果我问另一个人死亡之门在哪里,他会怎么回答?
最终得到的回答肯定是指向自由之门的。
【51】
1011121314151617181920212223=198
198/30=6余18.
小孩子站在18号位置即可.
【52】
1)27头牛6天所吃的牧草为:
27×6=162
(这162包括牧场原有的草和6天新长的草。
)
(2)23头牛9天所吃的牧草为:
23×9=207
(这207包括牧场原有的草和9天新长的草。
)
(3)1天新长的草为:
(207-162)÷(9-6)=15
(4)牧场上原有的草为:
27×6-15×6=72
(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:
72÷(21-15)=72÷6=12(天)
【53】
假设出沙漠时有