DOS态密度.docx

上传人:b****3 文档编号:864171 上传时间:2022-10-13 格式:DOCX 页数:14 大小:29.98KB
下载 相关 举报
DOS态密度.docx_第1页
第1页 / 共14页
DOS态密度.docx_第2页
第2页 / 共14页
DOS态密度.docx_第3页
第3页 / 共14页
DOS态密度.docx_第4页
第4页 / 共14页
DOS态密度.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

DOS态密度.docx

《DOS态密度.docx》由会员分享,可在线阅读,更多相关《DOS态密度.docx(14页珍藏版)》请在冰豆网上搜索。

DOS态密度.docx

DOS态密度

态密度(DensityofStates,简称DOS

在DOS结果图里可以查看是导体还是绝缘体还是半导体,请问怎么看。

理论是什么?

或者

哪位老师可以告诉我这方面的知识可以通过学习什么获得。

不胜感激。

查看是导体还是绝缘体还是半导体,最好还

:

是用能带图

DOS的话看费米能级两侧的能量差

谢希德。

复旦版的《固体能带论》一书中有,请参阅!

另外到网上或者学校的数据库找找第

一性原理”方面的论文

,里面通常会有一些计算分析。

下面有

一篇可以

下载的:

ZnO的第一性原理计算

hoffman的《固体与表面》对态密度的理解还是很有好处的。

下面这个是在版里找的,多看看吧:

如何分析第一原理的计算结果

用第一原理计算软件开展的工作,分析结果主要是从以下三个方面进行定性/定量的讨

论:

1、电荷密度图(chargedensity);

2、能带结构(EnergyBandStructure);

3、态密度(DensityofStates,简称DOS)。

电荷密度图是以图的形式出现在文章中,非常直观,因此对于一般的入门级研究人员来

讲不会有任何的疑问。

唯一需要注意的就是这种分析的种种衍生形式,比如差分电荷密图(def-ormationchargedensity)和二次差分图(differeneechargedensity)等等,加自旋极化的工作还可能有自旋极化电荷密度图(spin-polarizedchargedensity)。

所谓差分”是指原子组成体系(团簇)之后电荷的重新分布,二次”是指同一个体系化学成分或者几何构型

改变之后电荷的重新分布,因此通过这种差分图可以很直观地看出体系中个原子的成键情况。

通过电荷聚集(accumulation)/损失(depletion)的具体空间分布,看成键的极性强弱;通过某格点附近的电荷分布形状判断成键的轨道(这个主要是对d轨道的分析,对于s

或者p轨道的形状分析我还没有见过)。

分析总电荷密度图的方法类似,不过相对而言,这种图所携带的信息量较小。

能带结构分析现在在各个领域的第一原理计算工作中用得非常普遍了。

但是因为能带这个概念本身的抽象性,对于能带的分析是让初学者最感头痛的地方。

关于能带理论本身,我在这篇文章中不想涉及,这里只考虑已得到的能带,如何能从里面看出有用的信息。

首先当然可以看出这个体系是金属、半导体还是绝缘体。

判断的标准是看费米能级和导带(也即在高对称点附近近似成开口向上的抛物线形状的能带)是否相交,若相交,则为金属,否则

为半导体或者绝缘体。

对于本征半导体,还可以看出是直接能隙还是间接能隙:

如果导带的最低点和价带的最高点在同一个k点处,则为直接能隙,否则为间接能隙。

在具体工作中,情况要复杂得多,而且各种领域中感兴趣的方面彼此相差很大,分析不可能像上述分析一样

直观和普适。

不过仍然可以总结出一些经验性的规律来。

主要有以下几点:

1)因为目前的计算大多采用超单胞(supercell)的形式,在一个单胞里有几十个原子以及上百个电子,所以得到的能带图往往在远低于费米能级处非常平坦,也非常密集。

原则

上讲,这个区域的能带并不具备多大的解说/阅读价值。

因此,不要被这种现象吓住,一般的工作中,我们主要关心的还是费米能级附近的能带形状。

2)能带的宽窄在能带的分析中占据很重要的位置。

能带越宽,也即在能带图中的起伏

越大,说明处于这个带中的电子有效质量越小、非局域(non-local)的程度越大、组成这条能带的原子轨道扩展性越强。

如果形状近似于抛物线形状,一般而言会被冠以类sp带(sp

-likeband)之名。

反之,一条比较窄的能带表明对应于这条能带的本征态主要是由局域于某个格点的原子轨道组成,这条带上的电子局域性非常强,有效质量相对较大。

3)如果体系为掺杂的非本征半导体,注意与本征半导体的能带结构图进行对比,一般

而言在能隙处会出现一条新的、比较窄的能带。

这就是通常所谓的杂质态(dopingstate),

或者按照掺杂半导体的类型称为受主态或者施主态。

4)关于自旋极化的能带,一般是画出两幅图:

majorityspin和minorityspin。

经典的

说,分别代表自旋向上和自旋向下的轨道所组成的能带结构。

注意它们在费米能级处的差异。

如果费米能级与majorityspin的能带图相交而处于minorityspin的能隙中,则此体系具有明显的自旋极化现象,而该体系也可称之为半金属(halfmetal)。

因为majorityspin与费米能级相交的能带主要由杂质原子轨道组成,所以也可以此为出发点讨论杂质的磁性特征。

5)做界面问题时,衬底材料的能带图显得非常重要,各高对称点之间有可能出现不同

的情况。

具体地说,在某两点之间,费米能级与能带相交;而在另外的k的区间上,费米能

级正好处在导带和价带之间。

这样,衬底材料就呈现出各项异性:

对于前者,呈现金属性,而对于后者,呈现绝缘性。

因此,有的工作是通过某种材料的能带图而选择不同的面作为生长面。

具体的分析应该结合试验结果给出。

(如果我没记错的话,物理所薛其坤研究员曾经分析过$\beta$-Fe的(100)和(111)面对应的能带。

有兴趣的读者可进一步查阅资料。

原则上讲,态密度可以作为能带结构的一个可视化结果。

很多分析和能带的分析结果可以一一对应,很多术语也和能带分析相通。

但是因为它更直观,因此在结果讨论中用得比能带分析更广泛一些。

简要总结分析要点如下:

1)在整个能量区间之内分布较为平均、没有局域尖峰的DOS,对应的是类sp带,表明电子的非局域化性质很强。

相反,对于一般的过渡金属而言,d轨道的DOS一般是一个很大的尖峰,说明d电子相对比较局域,相应的能带也比较窄。

2)从DOS图也可分析能隙特性:

若费米能级处于DOS值为零的区间中,说明该体系是半导体或绝缘体;若有分波DOS跨过费米能级,贝够体系是金属。

此外,可以画出分波

(PDOS)和局域(LDOS)两种态密度,更加细致的研究在各点处的分波成键情况。

3)从DOS图中还可引入赝能隙”(pseudogap)的概念。

也即在费米能级两侧分别有两个尖峰。

而两个尖峰之间的DOS并不为零。

赝能隙直接反映了该体系成键的共价性的强弱:

越宽,说明共价性越强。

如果分析的是局域态密度(LDOS),那么赝能隙反映的则是相邻两个原子成键的强弱:

赝能隙越宽,说明两个原子成键越强。

上述分析的理论基础可从紧束缚理论出发得到解释:

实际上,可以认为赝能隙的宽度直接和Hamiltonian矩阵的非对角元相关,彼此间成单调递增的函数关系。

4)对于自旋极化的体系,与能带分析类似,也应该将majorityspin和minorityspin分别画出,若费米能级与majority的DOS相交而处于minority的DOS的能隙之中,可以说明该体系的自旋极化。

5)考虑LDOS,如果相邻原子的LDOS在同一个能量上同时出现了尖峰,则我们将其称之为杂化峰(hybridizedpeak),这个概念直观地向我们展示了相邻原子之间的作用强弱。

请教楼主:

1、我一直不明白DOS图中的非键的概念。

这里的非键,到底是什么意思?

DOS图中能不能看出来?

如何看?

2、金属中除了金属键,电子都是以什么状态存在的?

是非键吗?

所谓的非键是不是就是我

们过去所说的自由电子?

还是说,金属键的电子就是自由电子呢?

金属中金属键占大部分啊,还是说非键占大部分?

3、离子键在DOS中能不能看出来?

如何看?

4、我曾看到文献上说,费米能附近的非键是金属性的标志。

这句话如何理解?

1.其实DOS是固体物理的概念,而非键(以及成键和反键等)是结构化学的概念,但是现在经常用在同一个体系说明不同的问题。

先说一下非键,然后在把它跟BAND和DOS结合

起来。

从结构化学的角度来说,分子轨道是由原子轨道线性组合而成。

如果体系有n个原子轨道进

行组合,就会产生n个分子轨道(即轨道数目守恒,其实从量子力学的角度,就是正交变换

不会改变希尔伯特空间的维数)。

这些分子轨道的能量,可以高于,近似等于,或是低于原

子轨道的能量,它们分别对应于成键,非键,或是反键态。

简单的说,非键轨道跟组成它的

原子轨道能量差不多,如果有电子排在该轨道上,则对体系成键能量上没有太大帮助。

由于固体中的每个能带都是有许多原子轨道组合而成,简单的说,对于某一只能带,它的上

半部对应化学上所谓的反键态,下半部分对应于成键态,而中部的区域对应于非键态。

但是,

由于能带是非常密集的,从而是连续(准连续的),对于某个具体的能级,往往很难说出具体是什么键态,如果这个能级不是对应于能带低,或是能带顶的话。

而且,一般费米面附近

的能带不仅仅由一种原子轨道扩展而成,而是不同种轨道杂化而成,要定量说明是比较难的。

2.关于金属,粗糙的说,金属中的电子是以电子气的情况出现,分布于整个金属所在的空间。

正价离子实通过对公共”电子气的吸引而聚集在一起。

从化学上讲,金属键可以看做是一种共价键,只是没有饱和性和方向性。

但是这种理解太粗糙。

从固体物理的角度,金属中电子

分布跟半导体,绝缘体(也就是电介质)类似,对基态都是按照能量最低排在能带上。

只不过,金属的费米能级穿过电子所在的能带(也就是电子没有占满该能带),从而使得费米面

附近的电子参与导电。

所以,非键并不是我们说的自由电子,两者没有必然的联系。

金属中

的电子也不是完全的自由电子,其波函数还是受离子周期调制的布洛赫波,而非平面波。

3•离子键等不能在DOS中看,我发过专门的帖子。

单纯的从DOS最多可以定性的看出杂化,但是不能看出杂化轨道中的电子究竟偏向哪个原子,因此不能看出离子键或是共价键的情况。

最近我师弟问我一个很垃圾杂志上用DOS分析离子键或是共价键的文章,这个文章我

看了一下,它的分析是错的。

4.根据我上面的说法,由于固体的非键态”在DOS或是BAND的中部,当费米能级附近是

非键态时,换句话说,就是表明费米能级穿越了能带的中部,说明电子没有占满,因此是金

属晶体,是金属性的标识。

这么理解有道理。

第一原理计算结果讨论(系列二)

讨论一:

电荷密度图(chargedensity),变型电荷密图(def-ormationchargedensity)和差分电荷密度图(differeneechargedensity)等等,加自旋极化的工作还可能有自旋极化电荷密度图

(spin-polarizedchargedensity)。

所谓"变型”是指原子组成体系(团簇)之后电荷的重新分布,“差分”是指同一个体系化学成分或者几何构型改变之后电荷的重新分布,因此通过这种差分图可以很直观地看出体系中个原子的成键情况。

通过电荷聚集(accumulation)/损

失(depletion)的具体空间分布,看成键的极性强弱;通过某格点附近的电荷分布形状判断成键的轨道(这个主要是对d轨道的分析,对于s或者p轨道的形状分析我还没有见过)。

问题:

我对这三种电荷图理解的不透彻,通过这三种电荷密度图能判断出是共价键和离子键

吗?

如果能,怎样判断出来?

最好能给出三种电荷图加以说明。

讨论二:

对于成键分析用的晶体轨道重叠布局图,如何分析?

谁会MULLIKEN电荷布局图,请各

位虫友帮忙讨论这个问题,最好给个图,分析一下。

多谢。

讨论三:

TDOS,SDOS,SPDOS,LDOS,PDOS是从不同的侧面去描写体系的电子结构,反应的意义也不

同,大家谁知道TDOS,SDOS

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 可爱清新

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1