单片机课程设计简易频率计数器.docx

上传人:b****6 文档编号:8591440 上传时间:2023-02-01 格式:DOCX 页数:11 大小:474.42KB
下载 相关 举报
单片机课程设计简易频率计数器.docx_第1页
第1页 / 共11页
单片机课程设计简易频率计数器.docx_第2页
第2页 / 共11页
单片机课程设计简易频率计数器.docx_第3页
第3页 / 共11页
单片机课程设计简易频率计数器.docx_第4页
第4页 / 共11页
单片机课程设计简易频率计数器.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

单片机课程设计简易频率计数器.docx

《单片机课程设计简易频率计数器.docx》由会员分享,可在线阅读,更多相关《单片机课程设计简易频率计数器.docx(11页珍藏版)》请在冰豆网上搜索。

单片机课程设计简易频率计数器.docx

单片机课程设计简易频率计数器

单片机课程设计

简易频率计数器

1.实验目的

1.要求学生具有制作调试单片机最小系统及外设的能力,能够掌握单片机内部资源的使用。

2.熟练掌握焊接技术的基础上,能熟练使用单片机软件开发环境KeilC51编程调试,并使用STCISP调试工具采用串口下载方式联调制作的单片机最小系统。

二、实验要求

自制一个单片机最小系统,包括串口下载、复位电路,采用外部计数器T0或T1作为外部频率输入,外部频率由信号源提供,计算出来的频率显示在四位一体的数码管上。

三、实验器材

89C54RD芯片(与89c51芯片管脚和指令共用,只是内部存储单元有差异)一个,晶振一个,电容3个,电阻3个,12个10千欧姆电阻,4位一体共阴数码显示管一个,按钮1个,导线若干。

四、实验原理

1.芯片介绍

AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—FalshProgrammableandErasableReadOnlyMemory)的低电压,高性能CMOS8位微处理器,俗称单片机。

该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。

由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。

1.主要特性:

·与MCS-51兼容

·4K字节可编程闪烁存储器

寿命:

1000写/擦循环

数据保留时间:

10年

·全静态工作:

0Hz-24Hz

·三级程序存储器锁定

·128*8位内部RAM

·32可编程I/O线

·两个16位定时器/计数器

·5个中断源

·可编程串行通道

·低功耗的闲置和掉电模式

·片内振荡器和时钟电路

2.管脚说明:

VCC:

供电电压。

GND:

接地。

P0口:

P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。

当P1口的管脚第一次写1时,被定义为高阻输入。

P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。

在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口:

P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。

P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。

在FLASH编程和校验时,P1口作为第八位地址接收。

P2口:

P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。

并因此作为输入时,P2口的管脚被外部拉低,将输出电流。

这是由于内部上拉的缘故。

P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。

在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。

P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:

P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。

当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。

作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

P3口也可作为AT89C51的一些特殊功能口,如下表所示:

口管脚备选功能

P3.0RXD(串行输入口)

P3.1TXD(串行输出口)

P3.2/INT0(外部中断0)

P3.3/INT1(外部中断1)

P3.4T0(记时器0外部输入)

P3.5T1(记时器1外部输入)

P3.6/WR(外部数据存储器写选通)

P3.7/RD(外部数据存储器读选通)

P3口同时为闪烁编程和编程校验接收一些控制信号。

RST:

复位输入。

当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

ALE/PROG:

当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。

在FLASH编程期间,此引脚用于输入编程脉冲。

在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。

因此它可用作对外部输出的脉冲或用于定时目的。

然而要注意的是:

每当用作外部数据存储器时,将跳过一个ALE脉冲。

如想禁止ALE的输出可在SFR8EH地址上置0。

此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。

另外,该引脚被略微拉高。

如果微处理器在外部执行状态ALE禁止,置位无效。

/PSEN:

外部程序存储器的选通信号。

在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。

但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

/EA/VPP:

当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。

注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。

在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。

XTAL1:

反向振荡放大器的输入及内部时钟工作电路的输入。

XTAL2:

来自反向振荡器的输出。

3.振荡器特性:

XTAL1和XTAL2分别为反向放大器的输入和输出。

该反向放大器可以配置为片内振荡器。

石晶振荡和陶瓷振荡均可采用。

如采用外部时钟源驱动器件,XTAL2应不接。

有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。

4.芯片擦除:

整个PEROM阵列和三个锁定位的电擦除可通过正确的控制信号组合,并保持ALE管脚处于低电平10ms来完成。

在芯片擦操作中,代码阵列全被写“1”且在任何非空存储字节被重复编程以前,该操作必须被执行。

此外,AT89C51设有稳态逻辑,可以在低到零频率的条件下静态逻辑,支持两种软件可选的掉电模式。

在闲置模式下,CPU停止工作。

但RAM,定时器,计数器,串口和中断系统仍在工作。

在掉电模式下,保存RAM的内容并且冻结振荡器,禁止所用其他芯片功能,直到下一个硬件复位为止。

2、最小系统电路的组成

由电源、复位及振荡电路、四位一体数码管显示电路、按钮及LED电路。

复位及振荡电路

复位电路由按键复位和上电复位两部分组成。

电阻给电容充电,电容的电压缓慢上升直到vcc,到vcc时芯片复位脚近似低电平,于是芯片复位,接近vcc时芯片复位脚近高电平,于是芯片停止复位,复位完成。

AT89C51系列单片机为高电平复位,通常在复位引脚RST上连接一个电容到VCC,再连接一个电阻到GND,由此形成一个RC充放电回路保证单片机在上电时RST脚上有足够时间的高电平进行复位,随后回归到低电平进入正常工作状态,这个电阻和电容的典型值为10K和10uF。

按键复位就是在复位电容上并联一个开关,当开关按下时电容被放电、RST也被拉到高电平,而且由于电容的充电,会保持一段时间的高电平来使单片机复位。

使用6MHz的晶体振荡器作为振荡源,由于单片机内部带有振荡电路,所以外部只要连接一个晶振和两个电容即可,电容容量一般在15pF至50pF之间。

如下图所示

数码管显示电路

利用单片机的T0,T1计数定时器功能,来完成对输入信号进行率计数,计数结果通过4位动态数码管显示出来,能对0到9999HZ的方波信号频率进行准确计数。

如下图所示

3、软件设计

根据设计项目所需功能,我们先进行初始化,在待机状态下,采集频率。

然后检测是否有按钮按下,若按钮按下,则数码管显示所采集的频率,再按下键0时则不显示。

系统实现所有功能,其程序框图如图所示。

4、设计源程序

#include

bitint_flag;//定时器0,1S到标志位

unsignedcharvolatileT0Count;//定时器0的中断次数

unsignedcharvolatileT1Count;

unsignedcharcodetable[]//定时器1的中断次数

={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};//显示段码值为123456789

unsignedcharcodetemp[]={0xfe,0xfd,0xfb,0xf7};//数码管选通

unsignedlongsum;//1S内脉冲总个数

unsignedcharLed[4];//Led显示缓存

voiddelay(unsignedintnum){//软件延时

while(--num);//定时器0初始化

}

voidinit(void){

TMOD=0x51;//T1定时器0工作于方式1,定时器1计数

TH0=(65536-50000)/256;//定时50ms

TL0=(65536-50000)%256;

TH1=0x00;

TL1=0x00;

}

voiddisp(void){//数码显示

unsignedchari;

for(i=0;i<4;i++)

{

P2=temp[i];//片选

P0=table[Led[i]];//取数据显示

delay(100);//延时1毫秒

}

}

voidmain(void){

EA=1;//开总中断

init();//初始化定时器

TR0=1;//定时器开始工作

TR1=1;

ET1=1;//开T0中断

ET0=1;

while

(1){

if(int_flag==1){

int_flag=0;

sum=TL1+TH1*256+T1Count*65536;//计算1S内脉冲个数

//将数据格式化,转化成可显示的BCD码

Led[3]=sum%10000/1000;//显示千位

Led[2]=sum%1000/100;//显示百位

Led[1]=sum%100/10;//显示十位

Led[0]=sum%10;//显示个位

T0Count=0x00;

T1Count=0;

TH1=0x00;

TL1=0x00;

TR1=1;

}

disp();

}

}

voidint_t0(void)interrupt1{

TH0=(65535-50000)/256;

TL0=(65536-50000)%256;

T0Count++;

if(T0Count==20){

TR1=0;

int_flag=1;

T0Count=0x00;

}

}

voidint_T1(void)interrupt3{

T1Count++;

5、设计仿真图

输入正弦波频率为1324HZ的仿真情况;

输入方波频率为4216HZ的仿真情况;

6、实物图(未上电)

六、实验结果分析

在实验电路板验收的时候,对于给定的输入信号,数码管显示的频率示数与实际信号源给定的频率有大约20HZ的偏差,产生偏差的原因可能有:

1.电路电容的选取不恰当;2.焊接电路板的时候,因为操作不恰当,某些焊点的焊接不到位;3.实际器件与仿真所用到的的元件有差别。

七、心得体会

通过这次课程设计,我熟悉了KeilC51编程与PROTUSE的使用,对单片机的使用有了更深刻的了解,在焊接与测试过程中要有大局观,注意布局和布线。

频率计的设计让我更好的了解如何应用单片机的定时器计数器模块。

其中最重要的是分析问题解决问题的能力,在我看来,写程序并不难,重要的是把程序优化,无论是在节省硬件资源,还是提高数据的准确度来看,都需要下一些功夫把它做到最好。

通过这次课程设计使我明白了自己原来知识还比较欠缺。

学习是一个长期积累的过程,在以后的工作、生活中都应该不断的学习,努力提高自己知识和综合素质。

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 外语学习 > 韩语学习

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1