金属塑性加工原理试题与答案.docx

上传人:b****3 文档编号:858497 上传时间:2022-10-13 格式:DOCX 页数:13 大小:699.51KB
下载 相关 举报
金属塑性加工原理试题与答案.docx_第1页
第1页 / 共13页
金属塑性加工原理试题与答案.docx_第2页
第2页 / 共13页
金属塑性加工原理试题与答案.docx_第3页
第3页 / 共13页
金属塑性加工原理试题与答案.docx_第4页
第4页 / 共13页
金属塑性加工原理试题与答案.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

金属塑性加工原理试题与答案.docx

《金属塑性加工原理试题与答案.docx》由会员分享,可在线阅读,更多相关《金属塑性加工原理试题与答案.docx(13页珍藏版)》请在冰豆网上搜索。

金属塑性加工原理试题与答案.docx

金属塑性加工原理试题与答案

一、简述“经典塑性力学”的主要容,以及“现代塑性力学”的发展概况(选2~3个发展方向加以简单介绍)(20分)

答:

“经典塑性力学”的主要容

经典塑性理论主要基于凸性屈服面、正交法则和塑性势等概念,描述的是一种均匀连续的介质在外力作用下产生不可恢复的位移或滑移现象的唯象平均。

经典塑性理论主要基于以下三个方面:

(1)初始屈服准则;

(2)强化准则;(3)流动规则。

经典塑性力学的三个假设

(1)传统塑性势假设。

众所周知,传统塑性势是从弹性势借用过来的,并非由固体力学原理导出。

因此这是一条假设。

按传统塑性势公式,即可得出塑性主应变增量存在如下比例关系:

(1)

式中Q为塑性势函数。

可推证塑性主应变增量与主应力增量有如下关系:

(2)

由式

(1)知式

(2)中矩阵[Ap]中的各行元素必成比例,即有

(3)

且[Ap]的秩为1,它只有一个基向量,表明这种情况存在一个势函数。

由式

(1)或式

(2)或传统塑性势理论,都可推知塑性应变增量的方向只与应力状态有关,而与应力增量无关,所以它的方向可由应力状态事先确定。

传统塑性势假设数学上表现为[Ap]中各行元素成比例及[Ap]的秩为1,物理上表现为存在一个势函数,且塑性应变增量方向与应力具有唯一性。

(2)关联流动法则假设,假设屈服面与塑性势面相同。

无论在德鲁克塑性公设提出之后还是之前,经典塑性力学中都一直引用这条假设。

对于稳定材料在每一应力循环中外载所作的附加应力功为非负,即有

(4)

式(4)本是用来判断材料稳定性的,而并非是普遍的客观规律。

然而有人错误地认为德鲁克公设可依据热力学导出,即应力循环中弹性功为零,塑性功必为非负,因而式(4)成立。

按功的定义,应力循环中,外载所作的真实功应为

(5)

式(5)表明,应力循环中只存在塑性功,并按热力学定律必为非负。

由式(5)还可看出,真实功与起点应力无关。

由此也说明附加应力功并非真实功,它只能理解为应力循环中外载所作的真实功与起点应力所作的虚功之差(见下图)。

(3)不考虑应力主轴旋转假设。

经典塑性力学中假设应变主轴与应力主轴始终重合,即不考虑应力主轴旋转在这种情况下,屈服方程可以写成三个应力量不变的函数。

只有在应力主轴旋转时,应力不变量不变,因此不会产生塑性变形。

“现代塑性力学”的发展概况

塑性力学作为固体力学的一个重要分支,其发展的历史虽然可以追溯到18世纪的70年代,但真得到充分发展并日臻成熟的是在20世纪的40年代和50年代初。

特别是理想塑性理论,这时已达到成熟并开始在工程实践中得到应用的阶段。

塑性变形现象发现较早,然而对它进行力学研究,是从1773年库仑Coulomb土壤压力理论,提出土的屈服条件开始的。

  H.Tresca于1864年对金属材料提出了最大剪应力屈服条件。

随后圣维南于1870年提出在平面情况下理想刚塑性的应力-应变关系,他假设最大剪应力方向和最大剪应变率方向一致,并解出柱体中发生部分塑性变形的扭转和弯曲问题以及厚壁筒受压的问题。

Levy于1871年将塑性应力-应变关系推广到三维情况。

1900年格斯特通过薄管的联合拉伸和压试验,初步证实最大剪应力屈服条件。

  此后20年进行了许多类似实验,提出多种屈服条件,其中最有意义的是Mises于1913年从数学简化的要求出发提出的屈服条件(后称米泽斯条件)。

米泽斯还独立地提出和Levy一致的塑性应力-应变关系(后称为Levy-Mises本构关系)。

泰勒于1913年,Lode于1926年为探索应力-应变关系所作的实验都证明,莱维-米泽斯本构关系是真实情况的一级近似。

  为更好地拟合实验结果,罗伊斯于1930年在普朗特的启示下,提出包括弹性应变部分的三维塑性应力-应变关系。

至此,塑性增量理论初步建立。

但当时增量理论用在解具体问题方面还有不少困难。

早在1924年亨奇就提出了塑性全量理论,由于便于应用,曾被纳戴等人,特别是伊柳辛等苏联学者用来解决大量实际问题。

  虽然塑性全量理论在理论上不适用于复杂的应力变化历程,但是计算结果却与板的失稳实验结果很接近。

为此在1950年前后展开了塑性增量理论和塑性全量理论的辩论,促使从更根本的理论基础上对两种理论进行探讨。

另外,在强化规律的研究方面,除等向强化模型外,普拉格又提出随动强化等模型。

电子计算机的发展,为塑性力学的研究和应用开展了广阔的前景,特别是促进了有限单元法的应用。

1960年,Argyris提出初始荷载法可作为有限单元法解弹塑性问题的基础。

自此理想塑性的塑性力学已经达到定型的阶段,而具有加工硬化的塑性力学至今仍是在发展中研究课题。

  20世纪60年代以后,有限元法的发展,提供恰当的本构关系已成为解决问题的关键。

所以70年代关于塑性本构关系的研究十分活跃,主要从宏观与微观的结合,从不可逆过程热力学以及从理性力学等方面进行研究。

  在实验分析方面,也开始运用光塑性法、云纹法、散斑干涉法等能测量大变形的手段。

另外,由于出现岩石类材料的塑性力学问题,所以塑性体积应变以及材料的各向异性、非均匀性、弹塑性耦合、应变弱化的非稳定材料等问题正在研究之中。

塑性力学的主要容

  从学科建立过程来看,塑性力学是以实验为基础,从实验中找出受力物体超出弹性极限后的变形规律,据以提出合理的假设和简化模型,确定应力超过弹性极限后材料的本构关系,从而建立塑性力学的基本方程。

解出这些方程,便可得到不同塑性状态下物体中的应力和应变。

  塑性力学的基本实验主要分两类:

单向拉伸实验和静水压力实验。

通过单向拉伸实验可以获得加载和卸载时的应力-应变曲线以及弹性极限和屈服极限的值;在塑性状态下,应力和应变之间的关系是非线性的且没有单值对应关系。

由静水压力实验得出,静水压力只能引起金属材料的弹性变形且对材料的屈服极限影响很小。

塑性力学的基本假设

为简化计算,根据实验结果,塑性力学采用的基本假设有:

①材料是各向同性和连续的。

②平均法向应力不影响材料的屈服,它只与材料的体积应变有关,且体积应变是弹性的,即静水压力状态不影响塑性变形而只产生弹性的体积变化。

这个假定主要根据是著名的Brid-gman试验。

③材料的弹性性质不受塑性变形的影响。

这些假设一般适用于金属材料;对于岩土材料则应考虑平均法向应力对屈服的影响。

塑性力学的简化模型

塑性力学的应力-应变曲线通常有5种简化模型:

①理想弹塑性模型,用于低碳钢或强化性质不明显的材料。

②线性强化弹塑性模型,用于有显著强化性质的材料。

③理想刚塑性模型,用于弹性应变比塑性应变小得多且强化性质不明显的材料。

④线性强化刚塑性模型,用于弹性应变比塑性应变小得多且强化性质明显的材料。

⑤幂强化模型,为简化计算中的解析式,可将应力-应变关系的解析式写为σ=σy(ε/εy)n,式中σy为屈服应力,εy为与σy相对应的应变,n为材料常数。

  屈服条件和本构关系在复杂应力状态下,判断物体屈服状态的准则称为屈服条件。

屈服条件是各应力分量组合应满足的条件。

对于金属材料,最常用的屈服条件为最大剪应力屈服条件(又称特雷斯卡屈服条件)和弹性形变比能屈服条件(又称米泽斯屈服条件)。

对于岩土材料则常用特雷斯卡屈服条件、德鲁克-普拉格屈服条件和莫尔-库伦屈服条件。

对于强化或软化材料,屈服条件将随塑性变形的增长而变化,改变后的屈服条件称为后继屈服条件。

当已知主应力的大小次序时,使用特雷斯卡屈服条件较为方便;若不知道主应力的大小次序,则使用米泽斯屈服条件较为方便。

对于韧性较好的材料,米泽斯屈服条件与试验数据符合较好。

由于塑性变形与变形历史有关,因此反映塑性应力-应变关系的本构关系用应变增量形式给出比较方便。

用应变增量形式表示塑性本构关系的理论称为塑性增量理论。

增量理论的本构关系在理论上是合理的,但应用比较麻烦,因为要积分整个变形路径才能得到最后结果。

因此,又发展出塑性全量理论,即采用全量应力和全量应变表示塑性本构关系的理论。

在比例变形的条件下,可通过积分增量理论的本构关系获得全量理论的本构关系。

当偏离比例变形条件不多时,全量理论的计算结果和实险结果比较接近。

求解塑性力学边值问题时,使用的平衡方程、几何方程(即应变和位移的关系)以及力和位移的边界条件都和弹性力学中使用的一样,只是物理关系不再用弹性力学中的克定律,而采用塑性增量或全量的本构关系。

经典弹塑性理论

在经典弹塑性理论中,应变增量可以被分为弹性部分和塑性部分:

弹性部分可按下式确定

其中,

塑性部分根据Drucker公设并关联流动法则,可得

其中f是屈服条件

二、什么叫初始与后继屈服?

写出常用的各向同性和各向异性材料的初始屈服准则的表达式,并说明其物理意义。

(20分)

答:

初始屈服:

是指在外力的作用下,质点由弹性变形状态进入塑性变形状态开始产生塑性变形的屈服。

后继屈服:

材料进入塑性阶段后卸载,然后重新加载至继续发生新的塑性变形时材料的再度屈服称为后继屈服,相应的屈服点称为后继屈服点。

对于绝大多数金属材料而言,在实际变形过程中,因为存在加工硬化,后继屈服的屈服强度比初始屈服高。

对于各向同性材料,不管采用什么样的变形方式,在变形体某点发生屈服的条件仅是各应力分量的函数,f与应力的方向无关,故f和坐标轴的选择无关的应力不变量来表示,即

C是与材料性质有关的常数,可通过简单实验测得。

常用各项同性屈服准则有:

Tresca屈服准则与Mises屈服准则。

Tresca屈服准则:

,K是材料的剪切屈服应力。

若则

当以材料拉伸实验来确定剪切屈服应力时,有。

若不知道主应力顺序,则Tresca条件可写成

 

Tresca屈服准则表示的物理意义是:

无论材料处于什么样的应力状态,只要最大剪应力达到某一极限值,材料就进入塑性变形状态。

Mises屈服准则:

 

Mises屈服准则表示的物理意义是:

无论材料处于什么样的应力状态,只要物体的等效应力达到某一定值时,材料就进入塑性变形状态。

对于各向异性材料,其各方向的材料特性不同,那么受力方向起决定性作用,其初始屈服准则的表达式:

f(σij,εij,t,T,S)=0,

其中σij为应力量,εij为应变量,t为时间,T为变形温度,

S为变形材料的组织特性。

常用的两种各向异性屈服准则:

 

三、简述塑性失稳的种类及各自的特点。

(20分)

答:

塑性失稳是指当材料所受载荷达到某一临界值时,即使载荷下降,塑性变形还会继续的现象。

即出现(剪切带、颈缩、皱曲、墩粗等塑性变形)现象的失效方式,可发生于墩粗、深冲、锻造和拉伸、压缩、过载等情况。

失稳主要分为压缩失稳和拉伸失稳两种。

其中,压缩失稳的主要影响因素是刚度参数,在塑性成形中表现为起皱和弯曲;拉伸失稳的主要影响因素是强度参数,它主要表现为明显的非均匀伸长变形。

在拉伸过程中,颈缩和剪的形成是最主要的现象,而其本征原因就是缺少加工硬化能力,由于晶粒较小无法存储和容纳更多的位错,从而使得失稳较早的发生。

压缩失稳

薄板在压缩变形过程中,失去了保持其原来平面形状的能力而产生弯曲隆起的现象薄板成形中,压缩失稳的表现形式是在板料局部出现皱折,称为起皱。

起皱是一种成形缺陷,板料局部起皱会大大增加变形抗力,往往导致板料拉伸变形区域较早发生拉伸失稳,因此,压缩失稳也是阻碍薄板成形顺利进行的障碍之一。

薄板成形中研究压缩失稳的机理与规律的主要目的就是确定避免或消除板料起皱的方法和手段。

与拉伸失稳完全限于塑性变形围不同,压缩失稳在弹性变形和塑性变形中都会发生。

一般来说,成形后期的塑性压缩失稳所导致的起皱,波幅不大,比较容易消除;而成形早期的弹性压缩失稳导致的起皱,往往会形成后续变形过程中难以消除的死皱。

但薄板成形中,经常出现的是塑性压缩失稳。

压缩失稳是刚度问题,其主要影响因素是材料的刚度参数,如弹性模数、应变强化模数

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1