超宽带通信技术原理与应用分析.docx

上传人:b****5 文档编号:8510344 上传时间:2023-01-31 格式:DOCX 页数:25 大小:301.30KB
下载 相关 举报
超宽带通信技术原理与应用分析.docx_第1页
第1页 / 共25页
超宽带通信技术原理与应用分析.docx_第2页
第2页 / 共25页
超宽带通信技术原理与应用分析.docx_第3页
第3页 / 共25页
超宽带通信技术原理与应用分析.docx_第4页
第4页 / 共25页
超宽带通信技术原理与应用分析.docx_第5页
第5页 / 共25页
点击查看更多>>
下载资源
资源描述

超宽带通信技术原理与应用分析.docx

《超宽带通信技术原理与应用分析.docx》由会员分享,可在线阅读,更多相关《超宽带通信技术原理与应用分析.docx(25页珍藏版)》请在冰豆网上搜索。

超宽带通信技术原理与应用分析.docx

超宽带通信技术原理与应用分析

目录

目录…………………………………………………………………………………1

摘要…………………………………………………………………………………3

Abstract……………………………………………………………………………4

第1章概述……………………………………………………………………6

1.1总述………………………………………………………………………6

1.2UWB基本原理…………………………………………………………6

1.2.1 脉冲信号…………………………………………………………6

1.2.2 UWB调制技术…………………………………………………7

1.3 UWB技术特点…………………………………………………………8

1.4 UWB发射机和接收机组成框图………………………………………9

1.4.1 UWB发射机组成框图……………………………………………9

1.4.2 UWB接收机组成框图…………………………………………10

1.5 UWB技术的应用前景…………………………………………………11

1.6 结束语……………………………………………………………………11

第2章MATLAB软件工具介绍………………………………………………13

2.1 MATLAB语言的概述…………………………………………………13

2.2 MATLAB的历史………………………………………………………13

2.3 MATLAB语言的特点…………………………………………………14

2.4 MATLAB仿真…………………………………………………………15

第3章 超宽带无线的调制技术………………………………………………17

3.1 PPM-TH-UWB调制方式……………………………………………17

3.1.1 跳时超宽带信号的产生…………………………………………17

3.1.2 PPM-TH-UWB的发射链路………………………………………20

3.1.3  PPM-TH-UWB仿真结果及其分析……………………………20

3.2 PAM-DS-UWB调制方式……………………………………………22

3.2.1直接序列超宽带信号的产生……………………………………22

3.2.2 PAM-DS-UWB 发射链路……………………………………24

3.2.3PAM-DS-UWB仿真结果及其分析……………………………25

3.3OFDM调制技术………………………………………………………27

3.3.1概述…………………………………………………………………27

3.3.2多频段OFDM-UWB信号产生   …………………………………28

3.4.3OFDM仿真结果及其分析…………………………………………28

3.4 总结………………………………………………………………………32

第4章性能分析及应用前景…………………………………………………33

4.1脉位调制(PPM)和脉幅调(PAM)……………………………………33

4.2 OFDM调制………………………………………………………………33

4.3 UWB的应用前景………………………………………………………34

致谢……………………………………………………………………………35

参考文献………………………………………………………………………36

 

摘要

  

超宽带(UWB,UltraWideBand)无线技术在无线电通信、雷达、跟踪、精确定位、成像、武器控制等众多领域具有广阔的应用前景,因此被认为是未来几年电信热门技术之一。

1990年,美国国防部首先定义了“超宽带”概念,超宽带无线通信开始得到美国军方和政府部门的重视。

2002年4月,美国FCC通过了超宽带技术的商用许可,超宽带无线通信在民用领域开始受到普遍关注。

目前“超宽带”的定义只是针对信号频谱的相对带宽(或绝对带宽)而言,没有界定的时域波形特征。

因此,有多种方式产生超宽带信号。

其中,最典型的方法是利用纳秒级的窄脉冲(又称为冲激脉冲)的频谱特性来实现。

  超宽带无线电是对基于正弦载波的常规无线电的一次突破。

几十年来,无线通信都是以正弦载波为信息载体,而超宽带无线通信则以纳秒级的窄脉冲作为信息载体。

其信号产生、调制解调、信号隐蔽性、系统处理增益等方面,具有独特的优势,尤其是能够在密集的多径环境下实现高速传输。

由于脉冲持续时间很短,多径分量在时域上不易重叠,多径分辨能力高,通过先进的多径分离技术或瑞克接收机,可以充分利用多径分量。

  目前,典型的超宽带无线通信调制方式以TH-PPM、TH-PAM为主,本论文中,介绍超宽带无线通信中的调制技术,主要讨论TH-PPM、TH-PAM的基本原理,并且对比调制技术的优缺点,性能的好坏,并进行动态的仿真,从仿真图中较清楚的研究调制方式,从而得出正确的结论,细致的研究超宽带无线通信中的调制技术。

关键字:

超宽带调制方式PPM调制PAM调制OFDM调制

  

 

Abstract

Ultra-Widebandwirelesstechnologyinradiocommunications,radar,tracking,precisepositioning,imaging,armscontrol,withawiderangeofprospects,isbelievedtobethenextfewyearsoneoftheMostpopulartechnologyfortelecommunications.In1990,Theu.s.DepartmentofDefensefirstdefinestheconceptofultra-widebandnetworking,ultra-widebandwirelesscommunicationbeginstogettheUSMilitaryandGovernmentdepartments.InApril2002,TheUSFCCpassedtheUWBtechnologycommerciallicense,ultra-widebandwirelesscommunicationincivilianareasareofcommonconcern.Atpresent,thedefinitionofultra-wideband"justfortheesignalspectrumofrelativebandwidth(orabsolutebandwidth),nodefinitionofthewaveform.Therefore,thereareseveralwaystoproduceultra-widebandsignal.Ofthese,theMosttypicalmethodistousethenanosecondpulsesof(alsoknownasimpulse)spectrumcharacteristics.

UWBradioisaradiobasedonconventionalsinusoidalcarrierabreak.Fordecades,wirelesscommunicationsarebasedonsinusoidalcarrierasinformationcarriers,andultra-widebandwirelesscommunicationszeyinarrownanosecondpulsesasinformationcarriers.thesignalgeneration,Modulationanddemodulation,signalhiding,thesystemprocessinggainandsoon,hasuniqueadvantages,inparticular,tothedensemultipathenvironmenttoachievehigh-speedtransmission.Asthepulsedurationisveryshort,Multipathcomponentsoverlapintimedomainisnoteasy,Multi-pathhigh-resolutioncapabilities,advancedMulti-pathThroughseparationorrakereceiver,youcantakefulladvantageofMultipathcomponents.

Atpresent,ThetypicalUWBModulationtoTH-PPM,TH-PAM,thisarticledescribesTheUWBwirelesscommunicationmodemtechnology,focusedontheTH-PPM,TH-PAM,andthebasicprinciplesofcomparativeadvantagesanddisadvantagesofModulationtechnology,performance,anddynamicsimulation,fromsimulationfigureinclearerofModulationtoobtainThecorrectconclusion,carefulstudyofultra-widebandwirelesscomunicationModemtechnology.

Keywords:

UWBModulationPPMModulationPAMModulationOFDMModulation

 

第1章概述

  

1.1总述

  近几年来,超宽带短距离无线通信引起了全球通信技术领域极大的重视。

超宽带通信技术以其传输速率高、抗多径干扰能力强等优点成为短距离无线通信极具竞争力和发展前景的技术之一。

FCC(美国通信委员会)对超宽带系统的最新定义是:

相对带宽(在-10dB点处)(fH-fL)/fc>20%(fH,fL,fc分别为带宽的高端频率、低端频率和中心频率)或者总带宽BW>500MHz。

它与现有的无线电系统比较,在花费更小的制造成本的条件下,能够做到更高的数据传输速率(100~500MbPs)、更强的抗干扰能力(处理增益50dB以上),同时具有极好的抗多径性能和十分精确的定位能力(精度在cM以内)。

  1.2UWB基本原理

  发射超宽带(UWB)信号最常用和最传统的方法是发射一种时域上很短(占空比低达0.5%)的冲激脉冲。

这种传输技术称为“冲击无线电(IR)”.UWB-IR又被称为基带无载波无线电,因为它不像传统通信系统中使用正弦波把信号调制到更高的载频上,而是用基带信号直接驱动天线输出的;由信息数据对脉冲进行调制,同时,为了形成所产生信号的频谱而用伪随即序列对数据符号进行编码。

因此冲击脉冲和调制技术就是超宽带的两大关键所在。

  1.2.1 脉冲信号

  从本质上讲,产生脉冲宽度为纳秒级的信号源是UWB技术的前提条件。

目前产生脉冲信号源的方法有两类:

①光电方法,基本原理是利用光导开关导通瞬间的陡峭上升沿获得脉冲信号。

由于作为激发源的激光脉冲信号可以有很陡的前沿,所以得到的脉冲宽度可达到皮秒(10-12)量级。

另外,由于光导开关是采用集成方法制成的,可以获得很好的一致性,因此是最有发展前景的一种方法。

②电子方法,利用微波双极性晶体管雪崩特性,在雪崩导通瞬间,电流呈“雪崩”式迅速增长,从而获得具有陡峭前沿的波形,成形后得到极短脉冲。

在电路设计中,采用多个晶体管串行级联,使用并行同步触发的方式,加快了雪崩过程,从而达到进一步降低脉冲宽度的目的。

  单周期脉冲的宽度在纳秒级(0.1~1.5ns),重复周期为25~1000ns,具有很宽的频谱。

实际通信中使用的是一长串的脉冲,由于时域中信号的周期性造成了频谱的离散化,周期性的单脉冲序列频谱中出现了强烈的能量尖峰。

这些尖峰将会对信号构成干扰,通过数据信息和伪随机码来进行编码P调制,改变脉冲与脉冲间的时间间隔,可以降低频谱的尖峰幅度。

  1.2.2 UWB的调制技术

  超宽带系统中信息数据对脉冲的调制方法可以有多种。

脉冲位置调制(PPM)和脉冲幅度调制(PAM)是UWB最常用的两种调制方式。

w(t)表示发送的单周期脉冲,dj,tj分别表示单脉冲的幅度和时延。

a PAM-UWB

  PAM是一种通过改变那些基于需传输数据的传输脉冲幅度的调制技术。

在PAM调制系统中,一系列的脉冲幅度被用来代表需要传输的数据。

任何形状的脉冲都是通过其幅度调制使传输数据在{-1,+1}之间变化(对于双极性信号)或在M个值之间变化(对于M元PAM)。

增加传输脉冲所占的带宽或减少脉冲重复频率,都可以增加一个固定平均功率谱密度的UWB系统所能达到的吞吐量和传输距离,可以看出这一效果与增加传输功率的峰值的效果是相似的。

采用脉冲幅度调制(PAM)的超宽带信号:

dj是信息序列,Tf是脉冲重复周期。

根据dj的不同取值,可将PAM调制方式分为以下三种:

(1)OOK(发送数据为1,UWB信号的幅度为1;发送数据为0,UWB信号的幅度为0);

(2)PPAM(发送数据为1,UWB信号的幅度为β1;发送数据为0,UWB信号的幅度为β2);

(3)BPSK(发送数据为1,UWB信号的幅度为1;发送数据为0,UWB信号的幅度为-1)。

对于这三种方式,在超宽带的PAM调制方式中多采用BPSK方式。

b PPM-UWB

  脉冲位置调制(PPM)又称时间调制(TM),是用每个脉冲出现的位置落后或超前某一标准或特定时刻来表示某个特定信息的。

二进制PPM是超宽带无线通信系统经常使用的一种调制方法,相对其它调制方法来说也是较早使用的一种方法。

采用PPM的一个重要原因是它能够使用零相差的相关接收机来接收检测信号,而这种接收机有着非常好的性能。

采用脉冲位置调制(PPM)的超宽带信号波形如下:

dj取0或1,δ为调制因子,与脉冲宽度TM(1/Tf)是一个数量级。

当发送数据为1时脉冲就会相应滞后一个时延δ。

给出了上述四种调制方法的信号波形图,对这四种调制方式给出了一个比较直观的描述。

  除了这些对脉冲的调制方法外,用伪随机码或伪随机噪声(PN)对数据符号进行编码以得到所产生信号的频谱时,根据编码的不同即扩频和多址技术不同,超宽带系统又被分为跳时的超宽带系统(TH-UWB)、直扩的超宽带系统(DS-UWB)、跳频的超宽带系统(FH-UWB)和基带多载波超宽带系统(MC-UWB)等。

 

  1.3 UWB技术特点

  由于UWB与传统通信系统相比,工作原理迥异,因此UWB具有如下传统通信系统无法比拟的技术特点:

  

(1)系统容量大。

香农公式给出C=Blog2(1+S/N)可以看出,带宽增加使信道容量的升高远远大于信号功率上升所带来的效应,这一点也正是提出超宽带技术的理论机理。

超宽带无线电系统用户数量大大高于3G系统。

  

(2)高速的数据传输。

UWB系统使用上GHz的超宽频带,根据香农信道容量公式,即使把发送信号功率密度控制得很低,也可以实现高的信息速率。

一般情况下,其最大数据传输速度可以达到几百Mbps~1Gbps。

  (3)多径分辨能力强。

UWB由于其极高的工作频率和极低的占空比而具有很高的分辨率,窄脉冲的多径信号在时间上不易重叠,很容易分离出多径分量,所以能充分利用发射信号的能量。

实验表明,对常规无线电信号多径衰落深达10~30dB的多径环境,UWB信号的衰落最多不到5dB。

  (4)隐蔽性好。

因为UWB的频谱非常宽,能量密度非常低,因此信息传输安全性高。

另一方面,由于能量密度低,UWB设备对于其他设备的干扰就非常低。

  (5)定位精确。

冲激脉冲具有很高的定位精度,采用超宽带无线电通信,可在室内和地下进行精确定位,而GPS定位系统只能工作在GPS定位卫星的可视范围之内。

与GPS提供绝对地理位置不同,超短脉冲定位器可以给出相对位置,其定位精度可达厘米级。

  (6)抗干扰能力强。

UWB扩频处理增益主要取决于脉冲的占空比和发送每个比特所用的脉冲数。

UWB的占空比一般为0.01~0.001,具有比其它扩频系统高得多的处理增益,抗干扰能力强。

一般来说,UWB抗干扰处理增益在50dB以上。

  (7)低成本和低功耗。

UWB无线通信系统接收机没有本振、功放、锁相环(PLL)、压控振荡器(VCO)、混频器等,因而结构简单,设备成本将很低。

由于UWB信号无需载波,而是使用间歇的脉冲来发送数据,脉冲持续时间很短,一般在0.20ns~1.5ns之间,有很低的占空因数,所以它只需要很低的电源功率。

一般UWB系统只需要50~70MW的电源,是蓝牙技术的十分之一。

尽管如此,UWB在技术上面临一定的挑战,还有诸多技术的问题有待研究解决,比如需要更好地理解UWB传播信道的特点,建立信道模型,解决多径传播;需要进一步研究高速脉冲信号的生成、处理等技术;研究新的调制技术,进一步降低收发结构的复杂度等。

1.4 UWB发射机和接收机组成框图

  1.4.1 UWB发射机组成框图

UWB发射机直接发送纳秒级脉冲来传输数据而不需使用载波电路。

所以,UWB发射机比现有的无线发射设备要简单得多。

TH-UWB发射机组成框图如图1-3所示。

图1-3 UWB发射机组成框图

调制后的数据与伪码产生器生成的伪码一起送入可编程延迟电路,可编程延迟电路产生的时延控制脉冲信号发生器的发送时刻,脉冲信号发生器输出的UWB信号由天线辐射出去。

脉冲信号产生电路的一个关键部分是天线,它的作用相当于一个滤波器。

  1.4.2 UWB接收机组成框图

  TH-UWB接收机采用相关接收方式,接收机框图如图4所示。

图4中虚线内的部分是相关器。

它由乘法器、积分器和取样/保持电路三部分组成。

接收机与发射机类似,两者的区别在于接收机的基带信号处理器从取样/保持电路中解调数据,基带信号处理器的输出控制可编程时延电路,为可编程时延电路提供定时跟踪信号,保证相关器正确解调出数据。

图1-4 UWB接收机组成框图

  

1.5 UWB技术的应用前景

  UWB系统在很低的功率谱密度的情况下,UWB具有巨大的数据传输速率优势,最大可以提供高达1000Mbps以上的传输速率,使UWB同其它短距离无线通信系统的技术优势非常明显,如表1所示。

现有的各种无线解决方案(例如802.11,Bluetooth等)的速率均低于100Mbit/s,UWB则在10M左右的范围之内打破了这一限制,UWB的应用将使人们可以摆脱更多线缆的牵绊,通信因而变得更为方便。

  1.6 结束语

  无线通信已经迅速渗入我们的生活当中,对容量不断增长的要求需要一种不对现有的通信系统造成影响的新的无线通信方案,超宽带脉冲无线电系统正好满足了这一要求。

UWB技术对于无线短距离的高速数据通信是非常有竞争力的,随着研究的深入,凭借多方面的优势,它将在很多领域占有一席之地。

特别是短距离传输的后3G领域,UWB将有广阔的发展空间。

表1 几种短距离无线通信比较

工作频率

IEEE802.11a

Bluetooth

UWB

传输

速率

2.4GHz

2.402~2.48GHz

3.1~10.6GHz

54Mbps

小于1Mbps

大于480Mbps

通信距离

10M~100M

10M

小于10M

发射功率

1瓦以上

1毫瓦~100毫瓦

1毫瓦以下

容量空间

80kbps/M2

30kbps/M2

1000kbps/M2

应用范围

无线局域网

家庭和办公室互连

近距离多媒体

终端类型

笔记本、台式电脑、掌上电脑、因特网网关

笔记本、移动电话、掌上电脑、移动设备

无线电视、DVD,高速因特网网关

  

 

第2章MATLAB软件工具介绍

2.1 MATLAB语言的概述

  MATLAB是一种科学计算软件,适用于工程应用各领域的分析设计与复杂计算,它使用方便,输入简捷,运算高效且内容丰富,很容易由用户自行扩展。

因此,它已成为大学教学和科学研究中最常用且必不可少的工具。

  MATLAB是“矩阵实验室”(MATrixLABoratoy)的缩写,它是一种以矩阵运算为基础的交互式程序语言,着重针对科学计算、工程计算和绘图的需求。

与其他计算机语言相比,其特点是简洁和智能化,适应科技专业人员的思维方式和书写习惯,使得编程和调试效率大大提高。

它用解释方式工作,键入程序立即得出结果,人机交互性能好,为科技人员所乐于接受。

特别是它可适应多种平台,并且随计算机硬、软件的更新而用时升级。

因而,MATLAB语言是数值计算用得最频繁的电子信息类学科工具。

它大大提高了课程教学、解题作业、分析研究的效率。

  2.2 MATLAB的历史

  在1980年前后,美国的CleveMoler博士在NewMexico大学讲授线性代数课程时,发现应用其他高级语言编程极为不便,便构思并开发了MATLAB(MATrixLABoratory,矩阵实验室),它是集命令翻译、科学计算于一身的一套交互式软件系统,经过在该大学进行了几次的试用之后,于1984年推出了该软件的正式版本。

它是以著名的线性代数软件包LINPACK和特征计算软件包EISPACK中的子程序为基础发展而成的一种开放型程序设计语言,其基本的数据单元是一个维数不加限制的矩阵,这就允许用户可以根据数值计算问题的复杂程序,对问题进行分段甚至逐句编程处理,显然这与C、FORTRAN等传统高级语言完全不同。

在MATLAB下,矩阵的运算变得异常的容易,后来的版本中又增添了丰富多彩的图形图像处理及多媒体功能,使得MATLAB的应用范围越来越广泛,Moler博士等一批数学家与软件专家组建了名为MaTHWorks的软件开发公司,专门扩展并改进MATLAB。

  为了准确地把一个控制系统的复杂模型输入给计算机,然后对之进行进一步的分析与仿真,1990年MaTHWorks软件公司为MATLAB提供了新的控制系统模型图形输入与仿真工具,并定名为SIMULAB,该工具很快在控制界得致函广泛的使用。

但因其名字与著名的软件SIMULA类似,所以在1992年正式改名为SIMULINK。

此软件有两个明显的功能:

仿真与连接,亦即可以利用鼠标在模型窗口上画出所需的控制系统模型,然后利用该软件提供的功能来对系统直接进行仿真。

很明显,这种做法使得一个很复杂系统的输入变得相当容易。

SIMULINK的出现,更使得MA

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 简洁抽象

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1