38M3液化石油储罐结构工艺及焊接工艺设计.docx

上传人:b****5 文档编号:8395219 上传时间:2023-01-31 格式:DOCX 页数:43 大小:453.09KB
下载 相关 举报
38M3液化石油储罐结构工艺及焊接工艺设计.docx_第1页
第1页 / 共43页
38M3液化石油储罐结构工艺及焊接工艺设计.docx_第2页
第2页 / 共43页
38M3液化石油储罐结构工艺及焊接工艺设计.docx_第3页
第3页 / 共43页
38M3液化石油储罐结构工艺及焊接工艺设计.docx_第4页
第4页 / 共43页
38M3液化石油储罐结构工艺及焊接工艺设计.docx_第5页
第5页 / 共43页
点击查看更多>>
下载资源
资源描述

38M3液化石油储罐结构工艺及焊接工艺设计.docx

《38M3液化石油储罐结构工艺及焊接工艺设计.docx》由会员分享,可在线阅读,更多相关《38M3液化石油储罐结构工艺及焊接工艺设计.docx(43页珍藏版)》请在冰豆网上搜索。

38M3液化石油储罐结构工艺及焊接工艺设计.docx

38M3液化石油储罐结构工艺及焊接工艺设计

38m3液化石油储罐结构工艺及焊接工艺设计

摘要

液化石油气贮罐是盛装液化石油气的常用设备,由于该气体具有易燃易爆的特点,因此在设计这种贮罐时,要注意与一般气体贮罐的不同点,尤其是安全与防火,还要注意在制造、安装等方面的特点。

卧式储罐设计是以应力分析为主要途径,以材料力学为基础,对容器的各个主要受压部分进行设计。

其设计的目的主要是确定合理、经济的结构形式,并满足制造、检验、装配、运输和维修等方面要求,设计中主要从强度和刚度两方面进行设计保证容器不因过渡变形而发生泄露失效,最终达到安全可靠的工作性能的要求。

该液化石油储罐依据GB150、JB/T4732等设计标准、严格执行TSGR0004-2009《固定式压力容器安全技术监察规程》的规定,充分考虑节能降耗的要求,基于弹性失效准则,完成对液化石油气储罐的设计;在AUTOCAD中正确绘出装配图;以储罐的建模,分析储罐整体的应力,数据显示在人孔接管与壳体连接处发生应力集中,同时经过查阅资料,运用公式也证明了只有人孔接管需要补强;然后对该储罐进行了补强设计。

关键词:

卧式储罐,应力,刚度,强度,结构设计

 

38m3LIQUEFIEDOILTANKSTRUCTUREDESIGN

PROCESSANDWELDINGPROCESS

ABSTRACT

Liquefiedpetroleumgasstoragetankisholdingcommonequipmentofliquefiedpetroleumgas(LPG),duetothecharacteristicsofthegasisflammableandexplosive,sointhedesignofthestoragetank,topayattentiontothedifferencesandcommongasstoragetank,especiallyforsecurityandfireprevention,notealsothatintheaspectofmanufacture,installation,etc.Horizontaltankdesignisbasedonstressanalysisasthemainway,onthebasisofmechanicsofmaterials,todesignthemaincompressionportionofthecontainer.Itsdesignpurposeismainlytodeterminethereasonable,economicstructure,andsatisfythefabrication,inspection,assembly,transportationandmaintenancerequirements,mainlyfromtwoaspectsofstrengthandstiffnessinthedesignofdesigntoensurecontainerdoesnotleakduetotransitionofdeformationfailure,eventuallyreachedtherequirementsofsafeandreliableworkperformance.

TheliquefiedoiltankbasedonGB150,JB/T4732Designstandards,strictenforcementofTSGR0004-2009"stationarypressurevesselssafetytechnologysupervisionprocedures"provisions,givefullconsiderationtosavingenergyandreducingconsumption,basedontheelasticfailurecriteria(DesignbyRule),andcompleteDesignofLPGstoragetank;CorrectdrawassemblydrawingsinAUTOCAD;Tankmodel,wasusedtoanalyzetheoverallstressofthestoragetank,thedatadisplayedinthemanholepipeandcasingjointstressconcentrationoccurs,throughaccesstoinformationatthesametime,usingtheformulaisalsoprovedthatonlyneedmanholeoverreinforcement;Thenhascarriedonthereinforcementtothetankdesign.

 

KEYWORDS:

Horizontaltank,Stress,Stiffness,Strength,Structuredesign

目 录

前 言

随着科技发展的日新月异,由于我国石油资源的限制,必须充分利用国外石油资源。

目前我国每年均要进口几千万吨原油和几百万吨液化石油气,才能满足国民经济和人民生活的需要。

(储罐,压力容)另一方面,随着全球经济一体化的发展和我国即将加入世界贸易组织(WTO),我国必须大力增加石油储备资源,以减少国际局势动荡对我国经济的影响。

以上情况迫切要求我们大力增加石油储存能力,发展大型储罐。

目前(10~15)万m3的浮顶罐是世界各国储存原油的主体罐型。

日本已建成了单罐容量为16万m3的大型储罐,还设计出了18万m3和30万m3的特大型储罐。

我国陆续在秦皇岛、黄岛、浙江舟山和大连等地建造了十几座10万m3的浮顶原油罐(系引进日本的技术与主要材料),使得5万m3和10万m3浮顶罐已成为我国目前原油储存的主体罐型。

由于大容量储罐的单位容量的耗钢量、投资及运营费用较低,为了适应我国原油进口和适当储备的形势,我们面临建造更大容量储罐的任务。

在选材方面,根据介质的易燃易爆、有毒、有一定的腐蚀性等特性,存放温度为-20~48℃,最高工作压力等条件。

根据国标规定选用16MnR为筒体材料,适用于介质含有少量硫化物,具有一定腐蚀性,壁厚较大(≥8mm)的压力容器。

为了得到良好的焊接工艺,封头材料和筒体材料一致,也是16MnR。

对于汽油、喷气燃料和柴油等大宗油料的储罐,随着石油和石油化工企业生产加工装置的大型化,也正朝着大型化发展。

深圳某些石化企业已建成了一批(2~5)万m3的内浮顶成品油料储罐。

对于液化石油气的储存,在沿海地区要大力开发大型常压低温储罐,以满足液化石油气需求量日益增长(主要由国外进口)的储存要求。

对于液化石油气的生产企业,它的主体罐型将是在常温压力下储存l000~3000m3的球罐。

因为在这些企业中,液化石油气的储罐储存能力一般为7天~10天的生产量。

由于油料周转快,要采用常压低温储存,就必须设置庞大的致冷设备,将生产装置生产的温度为40℃左右的液化石油气降至-4℃(丁烷)~-42℃(丙烷),而液化石油气的出厂手段一般为铁路罐车、汽车罐车或水运装船,用户都不要求进低温的液化石油气,这样就会造成能量的巨大浪费和作业困难,所以在这些液化石油气的生产企业中采用大容量常压低温储罐在经济上是不可行的。

本课题针对于38m3液化石油储罐的设计,主要是为了了解中小型储罐存在的意义和对一些场合特殊的用途。

通过此次对该储罐的结构及焊接工艺的研究中,更能够加深理解储罐类产品对化工工业发展的重要性。

第1章设计参数的选择

 

1.1液化石油气参数的确定

液化石油气的主要组成部分由于石油产地的不同,各地石油气组成成分也不同。

取其大致比例如下:

表1-1液化石油气组成成分

组成成分

异辛烷

乙烷

丙烷

异丁烷

正丁烷

异戊烷

正戊烷

乙炔

各成分百分比

0.01

2.25

49.3

23.48

21.96

3.79

1.19

0.02

对于设计温度下各成分的饱和蒸气压力如下:

表1-2各温度下各组分的饱和蒸气压力

温度/℃

饱和蒸汽压力/MPa

异辛烷

乙烷

丙烷

异丁烷

正丁烷

异戊烷

正戊烷

乙炔

-25

0

1.3

0.2

0.06

0.04

0.025

0.007

0

-20

0

1.38

0.27

0.075

0.048

0.03

0.009

0

0

0

2.355

0.466

0.153

0.102

0.034

0.024

0

20

0

3.721

0.833

0.294

0.205

0.076

0.058

0

50

0

7

1.744

0.67

0.5

0.2

0.16

0.0011

1.2设计温度

根据本设计工艺要求,使用地点为太原市的室外,用途为液化石油气储配站工作温度为-20~48℃,介质为易燃易爆的气体。

从表中我们可以明显看出,温度从50℃降到-25℃时,各种成分的饱和蒸气压力下降的很厉害,可以推断,在低温状态下,由饱和蒸气压力引起的应力水平不会很高。

由上述条件选择危险温度为设计温度。

为保证正常工作,对设计温度留一定的富裕量。

所以,取最高设计温度t=50℃,最低设计温度t=﹣25℃。

根据储罐所处环境,最高温度为危险温度,所以选t=50℃为设计温度。

1.3设计压力

该储罐用于液化石油气储配供气站,因此属于常温压力储存。

工作压力为相应温度下的饱和蒸气压。

因此,不需要设保温层。

根据道尔顿分压定律,我们不难计算出各种温度下液化石油气中各种成分的饱和蒸气分压,如下表:

表1-3各种成分在相应温度下的饱和蒸气分压

温度/℃

饱和蒸气分压/MPa

异辛烷

乙烷

丙烷

异丁烷

正丁烷

异戍烷

正戍烷

乙烯

-25

0

0.029

0.0946

0.014

0.0088

0.0009

0.00008

0

-20

0

0.031

0.127

0.0176

0.0105

0.0011

0.00011

0

0

0

0.053

0.2204

0.0359

0.0224

0.0013

0.00026

0

20

0

0.084

0.394

0.069

0.045

0.0029

0.00063

0

50

0

0.158

0.0825

0.1573

0.1098

0.0076

0.0019

0

有上述分压可计算再设计温度t=50℃时,总的高和蒸汽压力:

P=

=0.01%×0+2.25%×7+47.3%×1.744+23.48%×0.67+21.96%×0.5+3.79%×0.2+1.19%×0.16+0.02%×0.0011=1.25901MPa(1-1)

因为P异丁烷(0.2)

当液化石油气在50℃时的饱和蒸汽压力高于异丁烷在50℃时的饱和蒸汽压力时,若无保冷设施,则取50℃时丙烷的饱和蒸汽压力作为最高工作压力。

对于设置有安全泄放装置的储罐,设计压力应为1.05~1.1倍的最高工作压力。

所以有Pc=1.1×1.744=1.9184MPa。

1.4设计储量

参考相关资料,石油液化气密度一般为500-600Kg/m3,取石油液化气的密度为580Kg/m3,盛装液化石油气体的压力容器设计储存量为:

W=øVρt=0.9×38×580=19836t(1-2)

1.5主要元件材料的选择

1.5.1筒体材料的选择

选用筒体材料为16MnR(钢材标准:

GB6654)。

1.5.2鞍座材料的选择

该卧式容器采用双鞍座式支座,根据工作温度为-20~48℃,按国家标准选择鞍座材料为16MnR,使用温度为-20~250℃,许用应力为[σ]sa=170MPa。

1.5.3地脚螺栓的材料选择

根据密封所需压紧力大小计算螺栓载荷,选择合适的螺柱材料。

计算螺栓直径与个数,按螺纹和螺栓标准确定螺栓尺寸。

选择螺栓材料为Q345。

第2章容器的结构设计

 

2.1圆筒厚度的设计

根据介质的易燃易爆、有毒、有一定的腐蚀性等特性,存放温度为-20~48℃,最高工作压力等条件。

根据GB150-1998表4-1,选用筒体材料为低合金钢16MnR(钢材标准为GB6654)[σ]t=170MPa。

选用16MnR为筒体材料,适用于介质含有少量硫化物,具有一定腐蚀性,壁厚较大(≥8mm)的压力容器。

根据GB150,初选厚度为6~25mm,最低冲击试验温度为-20℃,热轧处理。

δ=

mm(2-1)

对于低碳钢和低合金钢,需满足腐蚀裕度C2≥1mm,取C2=2mm

查标准HG20580-1998《钢制化工容器设计基础规定》知,钢板厚度负偏差C1=0.25mm。

而当钢材的厚度负偏差不大于0.25mm,且不超过名义厚度的6%时,负偏差可以忽略不计,故取C1=0。

δd=δ+C2=14.51+2=16.51mm(2-2)

δn=δd+C1=16.51+0=16.51mm(2-3)

圆整后取名义厚度δn=18mm,[σ]t没有变化,故取名义厚度18mm合适。

2.2封头壁厚的设计

为了得到良好的焊接工艺,封头材料的选择同筒体设计,同样采用16MnR。

δ=

=14.465mm(2-4)

同理,选取C2=2mm,C1=0mm。

δn=δ+C1+C2=14.465+2+0=16.465mm(2-5)

圆整后取名义厚度为δn=18mm跟筒体一样,选择厚度为18mm的16MnR材料合适。

2.3筒体和封头的结构设计

对于承受内压,且设计压力Pc=1.9184MPa<4MPa的压力容器,根据化工工艺设计手册(下)常用设备系列,采用卧式椭圆形封头容器。

2.3.1筒体设计

查GB150-1998,为了有效的提高筒体的刚性,一般取L/D=3~6,为方便设计,此处取L/D=4(2-6)

Πd2L/4=38(2-7)

得:

D=2.296m=2296mm

圆整得D=2300mm

2.3.2封头设计

查标准JB/T4746-2002《钢制压力容器用封头》中表B.1EHA椭圆形封头内表面积、容积得:

表2-1EHA椭圆形封头内表面积、容积

公称直径DN/mm

总深度H/mm

内表面积A/

容积

/

2300

615

6.0233

1.7588

图2-1椭圆形封头

由2V

+

L/4=38得L=8303mm

圆整得L=8400mm则L/D=3.652符合要求.

则V

=2V

+

L/4=38.400m

>35m

且比较接近,所以结构设计合理。

2.4人孔的选择

查《压力容器与化工设备实用手册》,因筒体长度7600mm>6000mm,需开两个人孔,可选回转盖带颈对焊法兰人孔。

由使用地为太原市室外,确定人孔的公称直径DN=500mm,以方便工作人员的进入检修。

配套法兰与上面的法兰类型相同,根HG/T21518-2005《回转盖带颈对焊法兰人孔》,查表3-1,由PN=2.5MPa选用凹凸面的密封形式MFM,采用8.8级35CrMoA等长双头螺柱连接。

其明细尺寸见下表:

图2-2回转盖带颈对焊法兰人孔

表2-2人孔尺寸表

密封面形式

公称压力

公称直径

d

×

S

 

d

 

D

 

D1

 

H1

 

H2

 

b

 

b1

 

b2

 

A

 

B

 

L

 

d0

螺柱数量

螺母数量

螺柱尺寸

总质量

凹凸面

2.5

Mpa

500

530

×

12

500

730

660

270

134

48

54

55

405

200

300

30

20

40

M36

×

180

331

2.5通用件的选用

2.5.1接管和法兰

液化石油气储罐应设置排污口,气相平衡口,气相口,出液口,进液口,人孔,液位计口,温度计口,压力表口,安全阀口,排空口。

根据《压力容器与化工设备实用手册》PN=2.5MPa时,可选接管公称通径DN=80mm。

根据设计压力PN=1.9184MPa,查HG/T20592-97《钢制管法兰》,选用PN2.5MPa带颈平焊法兰(SO),由介质特性和使用工况,查密封面型式的选用。

选择密封面型式为凹凸面(MFM),压力等级为1.0~4.0MPa,接管法兰材料选用16MnR。

根据各接管公称通径,查得各法兰的尺寸如下:

图2-3带颈平焊钢制管法兰

表2-3法兰尺寸

序号

名称

公称通径DN

钢管外径

B

连接尺寸

 

法兰厚度C

 

法兰高度H

 

法兰颈

 

法内兰径B1

 

坡口宽度b

法兰理论质量

Kg

法兰

外径

D

D

螺栓孔中心圆直径K

螺栓孔直径

L

螺栓孔数量

n

螺栓通径

a

液位计口

32

38

140

100

18

8

M16

18

30

60

39

5

2.02

b

放气管

80

89

200

160

18

8

M16

24

40

118

91

6

4.86

d

安全阀口

80

89

200

160

18

8

M16

4

40

118

91

6

4.86

e

排污口

80

89

200

160

18

8

M16

24

40

118

91

6

4.86

f

液相出口

80

89

200

160

18

8

M16

24

40

118

91

6

4.86

g

液相回流管

80

89

200

160

18

8

M16

24

40

118

91

6

4.86

h

液相进口

80

89

200

160

18

8

M16

24

40

118

91

6

4.86

i

气相管

80

89

200

160

18

8

M16

24

40

118

91

6

4.86

j

压力表口

20

25

105

75

14

4

M12

16

26

45

26

4

1.03

k

温度计口

20

25

105

75

14

4

M12

16

26

45

26

4

1.03

图2-4筒体整体、接管、人孔分布图

接管外径的选用以B国内沿用系列(公制管)为准,对于公称压力0.25≤PN≤25MPa的接管,查《压力容器与化工设备实用手册》普通无缝钢管,选材料为16MnR。

对应的管子尺寸如下表:

表2-4接管尺寸

序号

名称

公称直径

管子外径

数量

管口伸出量

管子壁厚

伸长量质量(kg)

a

液位计管

32

38

2

100

3.5

0.447

b

放气管

80

89

1

150

4

1.26

d

安全阀

80

89

1

150

4

1.26

e

排污口

80

89

1

150

4

1.26

f

液相出口

80

89

1

150

4

1.26

g

液相回流管

80

89

1

150

4

1.26

h

液相进口

80

89

1

150

4

1.26

i

气相管

80

89

1

150

4

1.26

j

压力表口

20

25

1

100

3

0.244

k

温度计口

20

25

1

100

3

0.244

2.5.2垫片

查《钢制管法兰、垫片、紧固件》,知凹凸面法兰用MFM型垫片尺寸,根据设计压力为Pc=1.9184MPa,采用金属包覆垫片,选择法兰的密封面均采用MFM(凹凸面密封)。

金属材料为纯铝板L3,标准为GB/T3880,最高工作温度200℃,最大硬度40HB。

填充材料为非石棉纤维橡胶板,代号为NAS,最高工作温度为290℃。

得对应垫片尺寸如表:

图2-5凹凸面型垫片

表2-5垫片尺寸

符号

管口名称

公称直径DN(mm)

内径

D1(mm)

外径

D2(mm)

厚度

δ(mm)

a

液位计口

32

61.5

82

3

b

放气管

80

120

142

3

c

人孔

500

530

575

3

d

安全阀

80

120

142

3

e

排污口

80

120

142

3

f

液相出口

80

120

142

3

g

液相回流管

80

120

142

3

h

液相进口

80

120

142

3

i

气相管口

20

45.5

61

3

j

压力表

20

45.5

61

3

k

温度计

20

45.5

61

3

2.5.3螺栓(螺柱)的选择

根据密封所需压紧力大小计算螺栓载荷,选择合适的螺柱材料。

计算螺栓直径与个数,按螺纹和螺栓标准确定螺栓尺寸。

选择螺栓材料为Q345。

查《钢制管法兰、垫片、紧固件》得螺柱的长度和平垫圈尺寸:

图2-6双头螺柱

图2-7螺母

表2-6螺栓及垫圈尺寸

名称

管口名称

公称直径

螺纹

螺柱长

紧固件用平垫圈mm

d1

d2

h

a

液位计管

32

M16

85

17

30

3

b

放气管

80

M16

100

17

30

3

d

安全阀

80

M16

100

17

30

3

e

排污口

80

M16

100

17

30

3

f

液相出口

80

M16

100

17

30

3

g

液相回流管

80

M16

100

17

30

3

h

液相进口

80

M16

100

17

30

3

i

气相管

80

M16

100

17

30

3

j

压力表口

20

M12

75

13

24

2.5

k

温度计口

20

M12

75

13

24

2.5

2.6鞍座选型和结构设计

2.6.1鞍座选型

该卧式容器采用双鞍座式支座,根据工作温度为-20~48℃,按JB/T4731-2005选择鞍座材料为16MnR,使用温度为-20~250℃,许用应力为[σ]sa=17

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 其它模板

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1