微波介质陶瓷材料及其应用.docx

上传人:b****5 文档编号:8338215 上传时间:2023-01-30 格式:DOCX 页数:10 大小:25.62KB
下载 相关 举报
微波介质陶瓷材料及其应用.docx_第1页
第1页 / 共10页
微波介质陶瓷材料及其应用.docx_第2页
第2页 / 共10页
微波介质陶瓷材料及其应用.docx_第3页
第3页 / 共10页
微波介质陶瓷材料及其应用.docx_第4页
第4页 / 共10页
微波介质陶瓷材料及其应用.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

微波介质陶瓷材料及其应用.docx

《微波介质陶瓷材料及其应用.docx》由会员分享,可在线阅读,更多相关《微波介质陶瓷材料及其应用.docx(10页珍藏版)》请在冰豆网上搜索。

微波介质陶瓷材料及其应用.docx

微波介质陶瓷材料及其应用

本科毕业设计

论文题目 微波介质陶瓷材料及其应用              

学生姓名     杨 威            

学  号    053622025            

所属院部   电子与信息工程学院      

专  业  电子信息科学与技术              

班  级   2005级二班          

指导教师    熊 钢           

2009年5月

 

摘 要

微波介质陶瓷作为一种新型电子材料,在现代通信中被用作谐振器、滤波器、介质基片、介质天线、介质导波回路等,广泛应用于微波技术的许多领域。

可用于移动通讯、卫星通讯和军用雷达等方面。

随着科学技术日新月异的发展,通信信息量的迅猛增加,以及人们对无线通信的要求,使用卫星通讯和卫星直播电视等微波通信系统己成为当前通信技术发展的必然趋势。

这就使得微波材料在民用方而的需求逐渐增多,如手机、汽车电话、蜂窝无绳电话等移动通信和卫星直播电视等新的应用装置。

本课题综述国内外微波介质陶瓷的应用现状,阐明微波介质陶瓷材料应用中存在的问题,指明微波陶瓷材料今后的研究方向。

关键词:

微波介质陶瓷材料;应用;发展

 

ABSTRACT

Microwavedielectricceramicsasanewelectronicmaterial,inmoderncommunicationswereusedtoresonator,filter,dielectricsubstrate,dielectricantenna,mediumwaveguideloop,widelyusedinmanyfieldsofmicrowavetechnology.Itcanbeusedinmobilecommunications,satellitecommunicationsandmilitaryradar,etc.Withtherapiddevelopmentofscienceandtechnology,thecommunicationrapidincreaseofinformation,andtherequirementsforwirelesscommunication,usingsatellitecommunicationsandsatelliteliveTVetcmicrowavecommunicationsystem,thecommunicationtechnologyhasbecomeaninevitabletrend.Thismakesthematerialincivilmicrowaveanddemandincreasegradually,suchasmobilephone,cellularandcordlessautomobilecommunicationandsatelliteTVbroadcastonnewapplicationequipment.Thispaperpresentsituationoftheapplicationofmicrowavedielectricceramicdielectricceramics,microwaveproblemsexistingintheapplicationofmicrowaveceramics,pointingoutthedirectionoffutureresearch.

KEYWORDS:

Microwavedielectricceramicmaterials;Application;Development

目 录

1绪论  1

2微波介质陶瓷材料的发展  3

2.1微波介质陶瓷材料的发展背景  3

2.2国内外微波介质陶瓷材料的发展  3

3微波介质陶瓷材料的应用  4

3.1微波介质陶瓷的性能要求  5

3.2微波介质陶瓷材料的分类  6

3.2.1低介微波介质陶瓷体系  6

3.2.2中介微波介质陶瓷体系  8

3.2.3高介微波介质陶瓷  9

3.3微波介质陶瓷材料的主要应用  11

3.3.1介质谐振器  12

3.3.2介质滤波器  13

3.3.3其它方面的应用  13

4微波介质陶瓷材料存在的问题和展望  15

致 谢  17

参考文献  18

即可):

 

一 绪论

陶瓷的发展史是人类文明史的一个缩影,现代人在研究古代历史的时候,各个时期留存下来的陶瓷便是最有价值的线索。

当陶瓷这一古老的工艺发展成陶瓷科学的时候,她便成了对我们生活能产生重大影响的一门学科。

近半个多世纪以来,随着陶瓷材料的研究和开发,在与人类生活息息相关的各个领域,如电子、通讯、能源、交通、宇宙探索和国家安全等,都能找到陶瓷的身影。

可以说现代人的生活离不开陶瓷,陶瓷的进步给人类带来的是生活方式的日新月异。

微波介质陶瓷是近二十多年来发展起来的一种新型的功能陶瓷材料。

它是指应用于微波频率(主要是300MHz~30GHz频段)电路中作为介质材料并完成一种或多种功能的陶瓷材料,是制造微波介质滤波器和谐振器的关键材料。

它具有高介电常数、低介电损耗、温度系数小等优良性能,适于制造多种微波元器件,能满足微波电路小型化、集成化、高可靠性和低成本的要求。

近年来,由于微波通信事业的迅速发展,卫星通信、汽车电话和便携式电话等移动通信领域对小型化、高性能化的微波电路和微波器件的需求量日益增加,更高频带的利用也在计划之中。

这就要求作为情报通信社会的支撑,要不断开发具有更加优越性能的新型材料。

由于微波信号的频率极高,波长极短,信息容量大,有强方向性、穿透性和吸收能力,并且微波设备可实现通信的保密性,十分有利于通信技术领域和军事领域中的应用。

实现微波设备的小型化、高稳定性和廉价的途径是微波电路的集成化。

传统的金属谐振腔和金属波导体积和重量过大,限制了微波集成电路的发展。

而微波介质陶瓷能很好地解决这些问题。

使得微波介质陶瓷在近二十多年来得到迅速的发展,成为制造微波介质滤波器和谐振器的关键材料。

微波介质陶瓷具有高介电常数、低微波损耗、温度系数小等优良性能,适于制作各种微波器件,如电子对抗、导航、通讯、雷达、家用卫星直播电视接受机和移动电话等设备中的微波振荡器、滤波器和鉴频器,能满足微波电路小型化、集成化、高可靠性和低成本的要求。

随着移动通信的发展,微波介质陶瓷的研究越来越受到人们的重视[1]。

随着微波技术的迅速发展,信息化社会对微波介质陶瓷材料的要求也会越来越高,其应用前景也会越来越好。

但目前的体系还不能完全满足令人满意,还存在一些问题。

对微波介质材料性能的微观机理有待于进一步研究,希望能从理论上了解影响陶瓷材料微波损耗的机理,找出晶体的微观结构和材料微波介电性能之间的关系。

另外现有的制备工艺也有待于进一步改进。

目前多采用常规的高温固相反应方法制备,不仅烧结时间长,很难获得致密的结构,而且组分易挥发,使产物偏离预期的组成并形成多相结构,从而导致材料性能的劣化和不稳定性。

近年来软化学法作为一种先进的材料制备方法,已经在功能陶瓷的制备方面开辟了一种新的工艺路线。

我们相信随着研究的进一步深入和新型烧结技术的运用,最终可实现微波介质陶瓷材料组成、结构与性能的可调控性,微波介电材料将显示出广阔的应用前景绪论部分主要论述论文的选题意义及应用背景、国内外研究现状分析及论文的主要研究内容等。

 

2微波介质陶瓷材料的发展

2.1微波介质陶瓷材料的发展背景

近年来,移动通信、卫星通信、全球卫星定位系统(GPS)、蓝牙技术以及无线局域网(WLA)等现代通信业得到了飞速发展。

这种飞速发展极大的带动了现代通信相关元器件的需求。

对微波谐振器、滤波器、振荡器、移相器、微波电容器以及微波基板等元器件这种庞大的市场需求,再加上微波介质陶瓷制作的介质谐振器等微波元器件具有体积小、质量轻、性能稳定、价格便宜等优点,因此微波介质陶瓷也发展得相当迅速,其市场也迅速扩大,并且在现代通信工具的微型化、片式化、集成化起着举足轻重的作用。

正是这种强大的市场驱动,微波介质陶瓷得到了广泛而深入的研究。

世界各国都在加大投入进行广泛的研究,陆续开发出新材料体系。

这些体系要得到工业应用,必须在性能上要满足高介电常数、低介电损耗以及良好的频率稳定性,当然还要求低的成本。

2.2国内外微波介质陶瓷材料的发展

微波,一般是指频率介于300MHz-300GHz,波长介于lm-lmm的电磁波。

在整个电磁波频谱中,微波处于超短波和红外波之间。

与普通的无线电波相比,微波的频率高,可用频带宽,信息容量大,可以实现多路通信;微波的波长很短,方向性极强,很适合于雷达等发现和跟踪目标;微波能穿透高空的电离层,因而特别适用于卫星通讯等。

鉴于微波的这些特点,微波技术在通信领域的应用有着广阔的前景[2]。

微波介质陶瓷,是指应用于微波频段电路中作为介质材料并完成一种或多种功能的陶瓷,1939年,B.QRichtmeyer从理论上提出介质陶瓷材料可作谐振器的设想后,美国率先开始了微波介质陶瓷材料的研制。

70年代美国最先研制出实用化的K38材料。

接着,日本在80年代提出了R-04C、R-09C等不同类型材料的微波性能。

其后,法国、德国等欧洲国家也相继开始了这方面的研究。

目前,日本在该领域的研究已后来居上,村田、松下、NGK等公司都有其各具特色的微波介质材料体系;美国、欧洲也未停止研究工作,不断有微波介质陶瓷的研究报告发表。

随着微波应用范围的拓广,亟须满足特殊频段使用要求的微波介质陶瓷材料。

现在,移动通信用εr≥60的材料和毫米波、亚毫米波回路集成化的介质波导线路用εr≤30的材料,正成为世界性的研究热点和难点。

1992年7月,日本松下电气公司在高介电常数微波介质陶瓷材料上取得进展,研制出钙酸铅体系的Pb-Zr-Ca新材料,其εr≥110,Q≥1200(约2GHz),τf≤30×10-6/℃。

这是至今为止εr最高的微波介质陶瓷材料[3,4]。

我国对微波介质陶瓷材料的研制始于80年代初。

由于材料、工艺水平低,测试评价困难等因素,基本上是重复与追踪国外的研究工作。

80年代重复国外BaO—TiO2系微波介质陶瓷的研究,90年代则追踪国外的Ba(Zn1/3,,Ta2/3)O3、Ba(Mg1/3,Ta2/3)O3以及BaO-Sm2O3-TiO2、BaO-La2O3-TiO2等体系(分别简写为BZT、BMT及BST、BLT)的研究工作,如华南理工大学的BMT-BZT系材料,上海科大的BST系材料,799厂和999厂的九钛钡,电子科技大学的BaO-Nd2O3-TiO2等。

这些研究工作或者缺少对τf的测试,或者对τf的测试因采用了太粗糙的设备(如波长仪)而数据不精确,其水平与应用都远远不能满足国内微波通讯技术发展的需要。

从1991年以来,电子部和国家科委加强了对微波介质陶瓷材料的研究工作,北京建材院、电子科技大学信息材料学院等研究单位凭借其雄厚的科研实力和先进的测试设备,都把微波介质陶瓷作为“八五”、“九五”攻关的重要课题,力争赶上世界水平。

电子科大已经有初步的研究成果,如低损耗的BZT-BMT材料达到相当水平,用先进的HIP工艺制备BaO-Nd2O3-TiO2微波陶瓷属国内外首创。

综合微波陶瓷的发展历史,根据其发展特点大致可以分为60年代、70年代、80年代和90年代四个不同的发展阶段。

各阶段的特点和代表材料的性能归纳于表2-1[5]。

表2-1微波介质陶瓷发展概况

年代

内容

年份

国别或人名

材料

特性

?

/GHz

Q

εr

τf/10-6/℃

 

60

介质谐振器模式材料探索等

1960

Cohn

TiO2

4

2000

100

500

 

1969

Hakki

 

提出评价微波介质陶瓷方法

 

70

微波介质陶瓷进入实用化阶段

1971

美国

K38

6

105

39.7

3

 

1974

美国

BaTi9O20

7

105

37

45

 

1979

村田

(Zr,Sn)TiO4

7

6500

36

 

80

材料新体系的不断拓广

1982

 

BMT

10

16800

25

4.4

 

1982

松下

BST

2

4000

70

4

 

1984

 

BZT

10

5100

30

34

 

1985

大内宏

BNT

4

2820

78

45

 

90

新技术新材料

1991

何进

HIP制作BNT

2

2000

84

30

 

1992

松下

Pb-Ti-Na-Ba

2

1200

110

30

 

 

 

 

 

 

 

 

 

 

 

 

 

3微波介质陶瓷材料的应用

3.1微波介质陶瓷的性能要求

评价微波介质陶瓷介电性能的参数主要有三个,及相对介电常数εr、品质因数Q·f、谐振频率温度系数τf=-6.8ppm/℃。

应用于微波电路的介质陶瓷,除了必备的机械强度、化学稳定性及经时稳定性外,应满足如下介电特性的要求[6]:

(1)在微波频率下材料相对介电常数εr应大,以便于器件小型化。

由微波传输理论可知:

微波在介质体内传输,无论采用何种模式,谐振器的尺寸都大约在λ/2~λ/4的整数倍间。

微波在介质体内传输时的波长λ与它在自由空间传输时的波长λ0有如下关系:

λ2=λ20/εr                                         (3-1)

式中:

λ0——自由空间传输时的波长

λ——介质体内传输时的波长

εr——材料相对介电常数

所以,相同的谐振频率下,εr越大,介质谐振器的尺寸就越小,电磁能量越能集中于介质体内,受周围环境的影响也小。

这既有利于介质谐振器件的小型化,也有利于其高品质化。

另一方面,谐振频率越高,波长越短,介质谐振器的尺寸在相对介电常数不是很大的情况下也可以很小,不同的应用领域,对εr的要求不同,通常要求εr>10。

(2)在微波频率下的介电损耗tan

应很小,即介质的品质因子Q(=1/tan

u)要高,以保证优良的选频特性和降低器件在高频下的插入损耗。

共振系的损耗tan

u由电介质的损耗tan

D、辐射损耗tan

R和电介质的支撑物及其周围金属容器的导体损耗tan

C组成。

只有使用低损耗的微波电介质陶瓷,才有可能制出高Q值的谐振器件。

(3)接近于零的频率温度系数τf。

材料的谐振频率温度系数τf是用来衡量谐振器谐振频率温度稳定性的一个参数,τf越大,则表明器件的中心频率随温度的变化而产生的漂移越大,将无法保证器件在温度变化着的环境中工作的高稳定性。

谐振频率的温度系数与电介质的线膨胀系数α、介电常数的温度系数存在以下关系:

τf=-(α+

τε)                         (3-2)

式中:

τf——频率温度系数

α——电介质的线膨胀系数

τε——介电常数的温度系数

3.2微波介质陶瓷材料的分类

目前,国内外对微波介质陶瓷的研究已经渐为完善,在微波频段下,各种极化机制稳定,材料的介电常数基本不随频率的变化而变化,根据介电常数的大小将其归为低介、中介和高介3大类,着重对各种典型体系的结构、介电性能、目前存在的问题和改性情况进行概述[7]。

3.2.1低介微波介质陶瓷体系 

微波介质陶瓷具有高介高损耗、低介低损耗的规律,故低介体系因其高品质因数而被应用于对介质损耗要求比较严格的领域,如卫星通讯、军用雷达等方面[8,9]。

1)Al2O3-TiO2系

α-Al2O3属三方晶系,刚玉型结构,O2-按畸变的六方紧密堆积,Al3+填充于2/3的八面体空隙中。

α-Al2O3的微波介电性能:

εr=10,Qf=500000GHz,τf=6×10-5/℃,品质因数高,但存在烧结温度高、谐振频率温度系数为较大的负值等缺点,掺CuO可有效降低烧结温度,掺TiO2可调节其温度系数,如经退火处理的0.9A1203-0.1TiO2具有优异的介电性能:

εr=l2.4,Qf=117000GHz,τf=1.5×l0-6/℃,常用于制备微波集成电路的基片。

Al2O3-TiO2系中掺入金属氧化物可制得MAl2O4-TiO2(M=Mg、Zn等),通式为(1-x)MAl2O4-xTiO2。

纯MgA12O4的εr=8.75,Qf=68900GHz,tanδ=0.00017(12.3GHz),但τf=-7.5×10-5/℃。

TiO2的作用同样是调节τf值,如0.75MgAl2O4-0.25TiO2的εr和τf分别为11.04和-1.2×10-5/℃,tanδ=0.00007(7.5GHz),综合性能比纯MgAl204有明显改善。

2)R2Ba(Cu1-xAx)O5系

R2Ba(Cu1-xAx)O5(R=Y、Sm、Nd、Yb等,A=Mg、Zn)属于单斜晶系,空间群为Pnma,结构中含CuO5棱椎形多面体、R2O11多面体和BaO11多面体,取代元素A可提高Qf值。

如Y2BaCuO5的εr=9.4,Qf=3831GHz,τf=-3.5×lO-5/℃,而Y2Ba(Cu0.8Mg0.2)O5的微波介电性能为:

εr=9.53,Qf=42287GHz,τf=3.88×lO-5/℃。

该体系频率温度系数呈现较大的负值,需探索新的改性方法调节其温度系数。

3)A(B'1/3B''2/3)O3系

Qf=ωr2/(2πγ)=常数                        (3-3)

式(3-3)中:

Qf——品质因素

ωr——为材料的固有角频率

γ——衰减系数

ωr为材料的固有角频率,γ为材料的衰减系数,在一定微波频率下,材料的Qf值基本保持不变,故在高频下使用需首选Qf值较高的材料。

B位取代的复合钙钛矿型微波介质陶瓷符合该要求,常应用于高频、低损耗领域。

通常A为Ca、Ba或Sr,B'为Mg、Zn或Ni,B''为Nb或Ta。

钙基Ca(B'1/3B''2/3)O3的介电常数一般为20~40,Qf值均在10000以上,但温度系数均是较大的负值,如该体系中Ca(Mg1/3Ta2/3)O3的值最高,为78000GHz,温度系数却为-61×10-6/℃。

钙基的A(B'1/3B''2/3)O3型陶瓷总体性能欠佳,应用前景有一定的局限性。

钡基Ba(B'1/3B''2/3)O3在A(B'1/3B''2/3)O3系中具有最好的介电性能,可用于制备各种介质谐振器和稳频振荡器。

如纯Ba(Mg1/3Ta2/3)O3(BMT)的介电常数可达24.5~24.7,Q为26000(9.8GHz),达到1.7×l0-6/℃,但烧结温度高于1500℃,由此会造成组分的挥发,材料性能恶化。

据报道通过共沉淀法制备粉体,可使BMT陶瓷的烧结温度降低180~250℃,介电性能:

Qf=65000GHz(10GHz),εr=23~25,τf=(0~3)×10-6/℃,但工艺复杂,不适合产业化;加入少量MgO-Al2O3-CaO-ZnO助烧剂,可使烧结温度降至1350℃,但会生成Ba5Ta4O15和Ba4Ta2O9等杂相,影响材料的介电性能。

故需寻找更有效的方式降低该体系的烧结温度[10]。

Ba(Mg1/3Ta2/3)O3和Ba(Mg1/3Zr2/3)O3(BZT)等陶瓷是有序一无序混合的钙钛矿型结构,有序结构空间群为Pm3m,无序结构的空间群为P3ml,其Q值很大程度上取决于晶格的有序度,较长的烧结时间可以增加有序度,Q值会大幅度提高。

但对于Ba(Zn1/3Nb2/3)O3(BZN),1350℃以下烧结的无序结构的值却比该温度以上烧结的有序结构的值还要高,故Ba(B'1/3B''2/3)O3系Qf值与微结构之间的关系还有待深入研究。

4)钛酸镁系列

钛酸镁主要有3种晶体:

正钛酸镁(Mg2TiO4)、二钛酸镁(MgTi2O5)和偏钛酸镁(MgTiO3),其中正钛酸镁为反尖晶石型结构,偏钛酸镁为钛铁矿型结构。

正钛酸镁以(Mg)[Ti,Mg]O4为主晶相,在1MHz下介电常数、介电损耗和谐振频率温度系数分别为14、3×10-4和6×l0-5/℃。

二钛酸镁的晶粒易异常长大,且介质损耗较大,没有实用价值。

偏钛酸镁在13GHz下εr=21,Qf=160000,τf=5×l0-5/℃。

加入6%(质量分数)的CuO-B2O3-V2O5助烧剂可使MgTiO3,烧结温度由1400℃降至900℃,满足产业化的要求。

为解决温度系数为较大负值的问题,通常掺杂少量CaTiO3,(正温度系数)对其改性,效果最好的是0.95MgTiO3-0.05CaTiO3系统:

εr=20~21,Qf=56000(7GHz),τf≈0×l0-6/℃,可用来制备高精度、热稳定高频电容器以及GPS天线等。

但纯MgTiO3,烧结温度范围窄,较难合成,且在烧结中会生成杂相。

如何最大程度上减少二钛酸镁相的生成是实际生产中需注重的问题。

5)AWO4系

AWO4(A=Ca、Sr、Ba、Zn、Mg)的结构主要是由A2+半径决定的,A2+的离子半径小时(A=Mg、Zn和Mn时)易形成黑钨矿结构,A2+和w6+与氧的配位数都为6,氧离子形成六方紧密堆积;A2+半径较大时,则会形成白钨矿结构,A2+和w6+与氧原子的配位数分别为8和4,氧离子形成立方紧密堆积。

该体系烧结温度较低(1100~1200℃),品质因数高,当A为Ca、Sr、Ba、Zn、Mg时,εr分别为10.0、8.58、8.27、16.58和8.75,Qf值都在20000GHz以上,但τf数值均为较大的负值(-40×l0-5/℃以下)。

国外有研究介绍,可通过向该体系中添加RNbO4(R=La,Nd,Sm)混合成(1-x)AWO4-xRNbO4的方法对其进行改性,0.7CaWO4—0.3NdNbO4在1150℃下烧结3h后其τf可达-1.5×l0-5/℃。

且随x增大,其εr有所提高,也得到一定改善,如0.5CaWO4-0.5NdNbO4的τf可达3.9×10-6/℃,改性效果较为明显。

但原料成本较高,如能探索更好的方式有效调节温度系数,将会有很好的应用前景。

6)AB2O6系

Lee等最早研究了AB2O6(A=Ca、Mg、Mn、Co、Ni、Zn;B=Nb、Ta)的介电性能,如表3-1所示。

MgTa2O6和MgNb2O6的Qf值较高,但τf不理想:

前者的τf为3×10-5/℃,后者的τf为-7×10-5/℃,两者复合后在1450℃下烧结4h,得到的Mg(Ta1-xNbx)2O6陶瓷,x=0.25时介电性能较为优异:

εr=27.9,Qf=33100GHz,τf=-7×10-7/℃。

目前国内对该体系研究较少,原料成本和烧结温度都较高,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工作范文 > 行政公文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1