不同长度敏感元件的两种巨磁阻抗传感器传感性能研究图文百度.docx

上传人:b****6 文档编号:8217637 上传时间:2023-01-29 格式:DOCX 页数:11 大小:29.63KB
下载 相关 举报
不同长度敏感元件的两种巨磁阻抗传感器传感性能研究图文百度.docx_第1页
第1页 / 共11页
不同长度敏感元件的两种巨磁阻抗传感器传感性能研究图文百度.docx_第2页
第2页 / 共11页
不同长度敏感元件的两种巨磁阻抗传感器传感性能研究图文百度.docx_第3页
第3页 / 共11页
不同长度敏感元件的两种巨磁阻抗传感器传感性能研究图文百度.docx_第4页
第4页 / 共11页
不同长度敏感元件的两种巨磁阻抗传感器传感性能研究图文百度.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

不同长度敏感元件的两种巨磁阻抗传感器传感性能研究图文百度.docx

《不同长度敏感元件的两种巨磁阻抗传感器传感性能研究图文百度.docx》由会员分享,可在线阅读,更多相关《不同长度敏感元件的两种巨磁阻抗传感器传感性能研究图文百度.docx(11页珍藏版)》请在冰豆网上搜索。

不同长度敏感元件的两种巨磁阻抗传感器传感性能研究图文百度.docx

不同长度敏感元件的两种巨磁阻抗传感器传感性能研究图文XX

第21卷第7期2008年7月

传感技术学报

a佃旺SEJ叭mNAL0FSI粥SOI晤ANDACⅡIA∞RS

V01.21No.7Jul_2008

StudyoftheS吼sing

Perfo珊anceofTwoKindsofGiant

MagnetoimpedanceSensorswithDifferentElementLengths“

LfXi,z1,ZHANGQi,z91,RUAN-厂缸咿鼎D7291,WANGQ聍90缸,z92,yANG崩矿Zo,191,ZHAoZh阴0妇1’r1-DFp口灯删D,Phy5ffs,王‰gi"eEringRP阳4玎^C≥"f盯,orJV口加户^o£o”if5&Ad啦ncPdhsf九l优明f,]

l^矗n衙删o,E矗w口£iDn,正h靠chi撇Nor撇fL砌z俚rsi廿,skn昏ki200062,chi船;

旧脚口砌删D,函m妇t删,肠砧吼lmNpm口f‰iwi妇,鼢讲口i200062,@im

Abstmct:

Acomparativestudybetweenconventiorlalgiantmagnetoimpedancesensorandoff-diagonalgiantmagnetoimpedancesensorusingC伊basedamorphouswireassensingelementhasbeeninvestigatedUnderthedcexternalrnagneticfieldtheoutputsignalsofthesetwosensorshavebeenmeasured、viththelengthofs锄plevarying.Theinfluenceofdemagnetizationfieldandotherfactorshavebeenalsodiscussed.Theresultsshowthatoff-diagonalsensorhassomeadvantagesofhighsensitivity,whichincreasesalittlewiththesamplelengthdecreasing,andnon_hysteresis.Itshowsgreatpotentialforweakmagneticfielddetec—tion,whichprovidessomereferencesfortheminimizationofmagneticsensors.

Keyw盯ds:

nlagneticsensor;giantmagnetoimpedanceeffect;demagnetization;minimization

EEAOC:

7230;5140

不同长度敏感元件的两种

巨磁阻抗传感器传感性能研究*

李欣1,张清1,阮建中1,王清江2,杨燮龙1,赵振杰¨

(攥篇萋奕茎麓柔絮薏糟黻徽醐魂髋帆h埔2000625

\2.华东师范大学化学系,上海200062,

摘要:

针对采用co基非晶丝作为敏感元件的传统巨磁阻抗传感器和非对角巨磁阻抗传感器进行比较研究。

改变敏感元件的长度,观察两者在直流外磁场作用下输出信号的变化规律,并讨论退磁场等因素对传感器输出信号的影响。

结果显示非对角巨磁阻抗传感器具有高灵敏度,无磁滞等优点,且灵敏度随样品长度的减小略有增大,在测量弱磁场方面表现出更大的潜力,为磁敏传感器的小型化提供了一定的参考依据。

关键词:

磁敏传感器;巨磁阻抗效应;退磁;小型化

中图分类号:

TP212;1M936文献标识码:

A文章编号:

l004.1699(200807—1147-咐

科学技术和工业生产的不断进步使传感器的研制向微型化、高灵敏度、快速响应、高稳定性等方向发展。

相对于其它传感器,磁敏传感器以安全、非接触、可靠性高等突出的优点,被广泛用于特殊条件下的弱信号探测。

在实际应用中,制作高性价比、低维护费用的磁敏传感器将会扩大其适用范围,为科技发展提供更大的帮助;因此在提高传感器灵敏度的前提下减小磁敏传感器的尺寸、降低成本成为传感器研制中的关键环节[1剖。

在磁敏传感器中,利用磁阻抗效应(MI制成的传感器具有体积小、灵敏度高等优点,一直是研究热点。

MI效应的起源是用经典电磁理论来解释的,和趋肤深度有关。

根据驱动和拾取信号的方式,可以将这类传感器分为四种,即传统GMI传感器,纵向驱动GMI传感器,非对角GMI传感器,线圈驱动GMI传感器。

MI传感器系列,按照图1不同端点总结在表1中睁8’。

基金项目:

国家自然科学基金资助(20575022,上海科技项目资助(0652衄036收稿日期:

2007—11一01修改日期:

2008一01—18

 

1148传感技术学报2008年

①1蕊叶②

③④

图1M1系列传感器示意图

表1Ml传感器系列中的不同驱动和拾取信号方式

对于GMI传感器,用较小的交流电流驱动敏感元件时,得到的输出电压正比于样品的阻抗值,属于线性元件;当敏感元件工作在较高幅值的电流下时,由于敏感元件被驱动场磁化饱和,样品两端或拾取线圈两端会产生非线性的电压输出[9]。

另外,由于阻抗是张量形式,有对角和非对角分量。

当驱动电流作用在①和②两端时,阻抗的对角分量的变化表现为敏感元件两端信号的变化,而阻抗的非对角分量的变化表现为线圈两端信号的变化[10|。

本文比较了驱动信号施加在①和②两端的传统GMI传感器和非对角GMI传感器输出信号的变化规律,研究了敏感元件的长度对这两种传感器的输出特性的影响,并利用一个模型来解释MI曲线的变化规律。

实验中,传统GMI传感器用较小的交流电流驱动,输出信号从样品两端取得,表示的是交流环向磁导率的变化规律。

而非对角GMI传感器用较大的交流电流驱动,并在线圈两端即③和④端并联电容形成LC共振,使共振频率为驱动频率的两倍,输出二次谐波信号,即得到样品交流纵向磁导率的变化规律,此时它随外磁场的变化十分灵敏[11|。

这两种传感器在测量弱磁场信号时,利用的都是零磁场附近的一段线性区域。

这段区域中,输出信号随磁场的变化是线性的,表现出较大的灵敏度和较好的线性度。

1实验方法

实验中采用的敏感元件是直径为23弘m的Coes.zFe4.sSil2.sBls玻璃包裹丝,样品的长度分别为5mm、10mm、20mm。

测量传统GMI传感器的输出信号时,采用直接测量敏感元件的方式。

改变敏感元件的长度,用一台精确的阻抗分析仪(HP4294A测量阻抗随外磁场的变化规律。

由于样品工作在恒定幅值的较小驱动电流下,阻抗值和样品两端的输出电压信号成正比,即阻抗的变化可用样品两端的电压变化来表示。

测量非对角GMI传感器的输出信号时,将敏感元件放置在由直径为40弘m的漆包线绕成的线圈中,并连接在函数发生器上。

固定线圈匝数为200匝,根据敏感元件的长度,改变线圈层数以保证线圈长度和敏感元件的长度近似相同,避免磁化过程中磁敏元件感应不一致的现象发生。

实验中,5mm、10mm和20mm的敏感元件对应的线圈分别为4层、2层、和1层。

在线圈的两端并联一个合适的电容,形成LC共振,并使传感器输出二次谐波信号。

在外磁场的作用下,传感器的输出电压由示波器输出…11。

当外磁场增大到一定程度时,材料磁化饱和,输出信号最小,就用相对于最大磁场的输出电压变化量来表示传感器的输出性能,由以下公式定义:

g%=幽笔掣×100%(1V“V(H。

…~“

一7其中,V(H和V(H。

分别是某个外磁场下的电压值和最大测量磁场下的电压值。

纵向直流外加磁场均由亥姆赫兹线圈提供。

2结果与讨论

对于传统GMI传感器,实际测量得到的是敏感元件的阻抗值随外磁场的变化规律。

图2表示的是一定驱动频率下不同长度敏感元件两端的电压变化量随外磁场的变化情况。

如图所示,对于具有环向磁结构的玻璃包裹丝,输出信号随着外磁场的变化呈现先增大后减小的趋势。

从插图中可以看出,在磁场为O~80Am-1的范围内,电压比迅速增大,磁场继续增大时电压比开始逐渐下降,达到1200Am.1后,材料磁化饱和,输出信号基本不变化。

再者,随着长度的减小,电压比略有增大,而灵敏度逐渐减小,从20mm的82.54×10-2%/A・m_1减小为5mm的58.95×10q%/A・m~。

可以看出,随着敏感元件长度的减小,灵敏度略有降低,在传感器的小型化过程中长度是一个重要的影响因素。

-4500-3000.15(oO150********0

磁场/Am‘J

图2频率为5MHz时,敏感元件长度和传统GMI传感器输出信号变化量的关系

 

第7期李欣,张清等:

不同长度敏感元件的两种巨磁阻抗传感器传感性能研究1149

然而非对角GMI传感器的输出电压变化情况有所不同。

图3是驱动频率为1MHz时,不同长度敏感元件的输出曲线,可以看出最初输出信号随着外磁场增大而增大,在一定外磁场下达到最大值。

当外磁场进一步增大时,输出信号逐渐减小直至材料磁化饱和,输出信号保持不变。

从传感器线圈拾取的输出信号是,

v.:

一堂:

一生!

盟丝!

!

!

旦盥!

!

卫:

一“出出

一M(H。

警+P半㈣

其中,拳和A分别是线圈的磁通量和横截面积,岸(£和H。

分别是纵向交流磁导率和直流外磁场,N是拾取线圈的匝数。

磁场/Am“

图3驱动频率为1MHz时,敏感元件长度和非对角GMI传感器输出信号变化量的关系

从公式(2中可以看出非对角GMI传感器的输出信号表示的是交流纵向磁导率的变化,与交流环向磁导率也有显著的关系[11|。

即使纵向外磁场为零时,由于交流环向磁场的变化,线圈中也会有较小信号输出。

另外,从图3中还可以看出,随着敏感元件长度的减小,传感器的输出信号也逐渐减小,而且变化幅度很大,这说明退磁场的影响十分显著。

考虑退磁场的影响,将退磁因子引入公式(2,得到,%2脚。

H0田责赫警(3其中,D是退磁因子。

随着长度的减小,退磁场增大,D也增大[12]。

通过简单的计算可以推导出输出信号随着D的增大而减小。

但灵敏度从20mm的10.77%/Am-1增加到5mm的15.82%/Am~,和传统GMI传感器相比,在探测弱磁场方面表现出很大的潜力。

另一方面,从图2的插图和图3均可以看出,随着敏感元件长度的减小,峰位对应的磁场有减小的趋势。

可以用如下简单的模型来解释在磁化过程中随着长度的减小各向异性场的变化趋势,如图4所示。

假设初始条件下各向异性场为H。

与退磁场合成后的矢量和为H。

由于退磁场HD的大小随着样品长度的减小而增大,随着长度的减小,各向异性场的和矢量H。

略有减小并向丝的环向方向转动,用H7。

表示。

这表明在退磁场的影响下,各向异性场向环向转动,使环向磁导率增加,传统GMI传感器测量得到的输出信号随之增加,而纵向磁导率及其变化率降低,则非对角GMI传感器的输出信号随之减小。

H;HoH。

%%

图4退磁场产生影响的模型

通过以上讨论,可以看出敏感元件的长度对两种传感器的输出信号都有影响。

其中,非对角GMI传感器随长度的变化很显著,而传统GMI传感器随长度的变化不大。

当使用相同长度敏感元件时,在同一驱动频率下比较这两种传感器的输出信号,得到图5所示的曲线。

450

3(o

150

O

《.150

翌.300

≤.450

掣50

非桷训㈣器卜、//

/\、

图5驱动频率为1MHz时,敏感元件长度均为5mm的两种传感器输出信号比随外磁场的变化

其中,非对角GMI传感器输出电压的变化量较大,在o~50Am-1磁场范围内表现出很高的灵敏度。

在较大驱动电流的作用下,敏感元件已经环向磁化饱和,此时由于磁矩转动输出曲线出现双峰。

相对地,传统GMI传感器在相同磁场范围内变化很小,再将该传感器的输出曲线和图2中5mm的敏感元件的曲线进行比较,频率较大时传感器在0~50Am_1磁场范围内的灵敏度高。

这说明对于传统GMI传感器,所用的驱动电流比较小,材料没有环向磁化饱和,磁化过程既有畴壁移动也有磁矩转动。

当驱动频率较低时,磁化过程主要得益于畴壁移动的贡献,曲线的双峰不明显;而在高频下,由于畴壁移动的作用逐渐减弱,磁化过程主要得益于磁矩转动,因此会有明显的双峰出现。

所以,低频下传统GMI传感器的低场灵敏度就大大降低。

 

1150传感技术学报2008年

另外,从实际应用的角度来比较这两种MI传

感器,传统GMI传感器可能产生磁滞,但具有驱动

电流小,可降低能耗的优点。

而对于非对角GMI传

感器,由于输出信号是二次谐波信号,测量中没有磁

滞,精确度和灵敏度都高,但使用的驱动电流相对较

大,增大了能耗。

在制作微型传感器的过程中,由于

非对角GMI传感器采用的是非对角方式,信号从绕

在敏感元件上的线圈得到,不仅减少了元件和后级

信号处理电路的相互干扰,而且可以利用LC共振

技术,得到更高的灵敏度。

同时,线圈本身可以加以

直流电流产生偏磁场,使敏感元件工作在最敏感区

域,用以测量弱磁场。

3结论

通过比较传统GMI传感器和非对角GMI传感

器的输出信号随外磁场的变化规律,可以看出在驱

动电流的大小和频率一定的情况下,敏感元件的长

度改变了退磁场的大小进而影响传感器的输出信

号,为更有效地研制微型传感器提供了参考依据。

两者相较而言,使用长度为5mm的敏感元件时,非

对角GMI传感器以其高灵敏度、无磁滞等特性在小

型化方面具有突出的潜力,可更广泛地用于测量生

物磁场等特殊条件下的磁场测量。

参考文献:

[1][2][3]张清,李欣,王清江,李小平,赵振杰,新型巨磁阻抗传感器的特

性研究[J].传感技术学报,2007,20(3,578—581.

Po访cRS,FlanaganJA,BesseP八TheFutureofMagnetic

Sensors口].Sens.Actuators,1996,A56:

39—55.

MahdiAE,PaninaL,MappsD.S0nleNewHorizonsinMag一

李欣(1983一,女,在读硕士研究生,现

就读于华东师范大学物理系材料物理

与化学专业,主要从事磁敏传感器的研

究。

neticSensing:

High_TcSQUIDs,GMRandGMIMaterials[J].skns.Actuators。

2003,A105:

271.285.

[4]SasadaI.OrthogonalFlu【gateMechanism(perated、^rithdcBiasedExcitation[J].J.Appl.Phys.2002,91:

7789—7791.[5]MohriK,uchiyamaT,PaninaLv.ARecentAdvancesofMicroMagneticSensorsandSensingApplication[J].sens.

Actuamrs.A59:

卜8.

[6]zhaozJ,BendjaballahF,YangxL,YangDP.L0ngitudi—nallyDrivenMagnet伊ImpedanceEffectinAnnealedFe-basedNanocrystallinePowderMaterials[J].J.MagnMagnMa—ter,2002,246:

62—66.

[7]“xP,zhaozJ,B0hT,seetHL,NeoBH,andKohsJ.CurrentDrivenMagneticPenTleabilityInterferenceSensorU—sillgNiFe/CuComposite

Wire谢thaSignaIPick-upLCCircuit口].Phys.Stat.S01,2004,A201:

1992—1995.

[8]BuznikovNA,AntonovAs,RakhmanovAA,GranovskyAB,KartashovMA,andPerovN&TheFrequencySpectrum

of

aVoltage

MeasuredinanAmorphousWireMagnetizedinAltematingMagIleticField[J].TechnicalPhysicalLetters,200430:

168—171.

[9]AntonovAS,BuznikovNA,GranovskyAB,PerovNS,ProkoshinAF。

RakhmanovAA。

RakkTlanovALNonlinearMagnetoimpedanceEffectinSoftMagneticAmorphousWiresExtractedfromMelt[J].Sens.Actuators,2003,A106:

208—211.

[10]MaknnovskiyDP,PaninaLV,andMappsDJ.Measnre—mentofField-跳pendenceSurfaceI唧edanceTensorinAmou—phousAnisotropy[J].J.AppLPhys,2000,87:

4804—4806.[11]zhaozJ,LixP,FanJ,seetHL,QianxB,RipkaP.ComparativeStudyoftheSensingPerfo如舱nceof0nhogonalFlu【gateSensors谢thDifferentAnlorphousSensingE1ements[J].sens.Actuators,2007,A136:

90一94.

[12]RipkaP.AdvancesinF1u【gateSensors[J].sens.Actua—tors,2003,A106:

8—14.

赵振杰(1970一,男,博士,教授,华东师范大学物理系博士生导师,现从事纳米巨磁阻抗效应及其应用、穆斯堡尔谱学方面的研究工作,zjzhao@phy.ecnu.

 

不同长度敏感元件的两种巨磁阻抗传感器传感性能研究

作者:

李欣,张清,阮建中,王清江,杨燮龙,赵振杰,LIXin,ZHANGQing,RUANJian-zhong,WANGQing-jiang,YANGXie-long,ZHAOZhen-jie

作者单位:

李欣,张清,阮建中,杨燮龙,赵振杰,LIXin,ZHANGQing,RUANJian-zhong,YANGXie-long,ZHAOZhen-jie(华东师范大学物理系统光电集成与先进装备教育部工程研究中心,上海,200062,王清江,WANGQing-jiang(华东师范大学化学系,上海,200062刊名:

传感技术学报

英文刊名:

CHINESEJOURNALOFSENSORSANDACTUATORS年,卷(期:

2008,21(7被引用次数:

2次

参考文献(12条

1.张清.李欣.王清江.李小平.赵振杰新型巨磁阻抗传感器的特性研究[期刊论文]-传感技术学报2007(032.PovicRS.FlanaganJA.BessePATheFutureofMagneticSensors1996

3.MahdiAE.PaninaL.MappsDSomeNewHorizonsinMagneticSensing:

High-ToSQUIDs,GMRandGMIMaterials2003

4.SasadaIOrthogonalFluxgateMechanismOperatedwithdcBiasedExcitation2002

5.MohriK.UchiyamaT.PaninaLVARecentAdvancesofMicroMagneticSensorsandSensingApplication6.ZhaoZJ.BendjaballahF.YangXL.YangDPLongitudinallyDrivenMagneto-ImpedanceEffectinAnnealedFe-basedNanocrystallinePowderMaterials2002

7.LiXP.ZhaoZJ.BOhT.SeetHLNeoBHandKohSJCurrentDrivenMagneticPermeabilityInterferenceSensorUsingNiFe/CuCompositeWirewithaSignalPick-upLCCircuit20048.BuznikovNA.AntonovAS.RakhmanovAA.GranovskyAB,KartashovMA,PerovNSTheFrequencySpectrumofaVoltageMeasuredinanAmorphousWireMagnetizedinAlternatingMagneticField20049.AntonovAS.BuznikovNA.GranovskyAB.PerovNSProkoshinAFRakhmanovAARakhmanovALNonlinearMagnetoimpedanceEffectinSoftMagneticAmorphousWiresExtractedfromMelt200310.MaknnovskiyDP.PaninaLV.MappsDJMeasarementofField-DependenceSurfaceImpedanceTensorinAmouphousAnisotropy2000

11.ZhaoZJ.LiXP.FanJ.SeetHLQianXBRipkaPComparativeStudyoftheSensingPerformanceofOrthogonalFluxgateSensorswithDifferentAmorphousSensingElements200712.RipkaPAdvancesinFluxgateSensors2003

相似文献(10条

1.期刊论文杨燮龙.杨介信.戴文恺.赵振杰.马学鸣.俞建国.丁永芝纳米巨磁阻抗效应与磁敏传感器-半导体学报2003,24(z1

利用纳米微晶巨磁阻抗效应研制的一种新型磁敏传感器已被开发.它与传统的磁通门、霍尔和磁电阻传感器相比具有灵敏度高、温度稳定性好、使用

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 成人教育 > 专升本

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1