新人教版八年级数学下册勾股定理教案精品教学设计.docx

上传人:b****6 文档编号:8120995 上传时间:2023-01-28 格式:DOCX 页数:10 大小:50.66KB
下载 相关 举报
新人教版八年级数学下册勾股定理教案精品教学设计.docx_第1页
第1页 / 共10页
新人教版八年级数学下册勾股定理教案精品教学设计.docx_第2页
第2页 / 共10页
新人教版八年级数学下册勾股定理教案精品教学设计.docx_第3页
第3页 / 共10页
新人教版八年级数学下册勾股定理教案精品教学设计.docx_第4页
第4页 / 共10页
新人教版八年级数学下册勾股定理教案精品教学设计.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

新人教版八年级数学下册勾股定理教案精品教学设计.docx

《新人教版八年级数学下册勾股定理教案精品教学设计.docx》由会员分享,可在线阅读,更多相关《新人教版八年级数学下册勾股定理教案精品教学设计.docx(10页珍藏版)》请在冰豆网上搜索。

新人教版八年级数学下册勾股定理教案精品教学设计.docx

新人教版八年级数学下册勾股定理教案精品教学设计

勾股定理

一、教学目标

1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2.培养在实际生活中发现问题总结规律的意识和能力。

3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。

二、重点、难点

1.重点:

勾股定理的内容及证明。

2.难点:

勾股定理的证明。

3.难点的突破方法:

几何学的产生,源于人们对土地面积的测量需要。

在古埃及,尼罗河每年要泛滥一次;洪水给两岸的田地带来了肥沃的淤积泥土,但也抹掉了田地之间的界限标志。

水退了,人们要重新画出田地的界线,就必须再次丈量、计算田地的面积。

几何学从一开始就与面积结下了不解之缘,面积很早就成为人们认识几何图形性质与争鸣几何定理的工具。

本节课采用拼图的方法,使学生利用面积相等对勾股定理进行证明。

其中的依据是图形经过割补拼接后,只要

没有重叠,没有空隙,面积不会改变。

三、例题的意图分析

例1(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的

思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。

激发学生的民族自豪感,和爱国情怀。

例2使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。

进一步让学生确信勾股定理的正确性。

四、课堂引入

目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。

我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。

这个事实可以说明勾股定理的重大意义。

尤其是在两千年前,是非常了不起的成就。

让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。

以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:

“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。

”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。

再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。

你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。

对于任意的直角三角形也有这个性质吗?

五、例习题分析

例1(补充

)已知:

在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。

求证:

a2+b2=c2。

分析:

⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。

⑵拼成如图所示,其等量关系为:

4S△+S小正=S大正

ab+(b-a)2=c2,化简可证

⑶发挥学生的想象能力拼出不同的图形,进行证明。

⑷勾股定理的证明方法,达300余种。

这个古老的精彩的证法,出自我国古代无名数学家之手。

激发学生的民族自豪感,和爱国情怀。

例2已知:

在△ABC中,∠C=90°,∠A、∠B

、∠C的对边为a、b、c。

求证:

a2+b2=c2。

分析:

左右两边的正方形边长相等,则两个正方形的面积相等。

左边S=4×

ab+c2

右边S=(a+b)2

左边和右

边面积相等,即

ab+c2=(a+b)2

化简可证。

 

六、课堂练习

1.勾股定理的具体内容是:

2.如图,直角△ABC的主要性质是:

∠C=90°,(用几何语言表示)

⑴两锐角之间的关系:

⑵若D为斜边中点,则斜边中线;

⑶若∠B=30°,则∠B的对边和斜边:

⑷三边之间的关系:

 

3.△ABC的三边a、b、c,若满足b2=a2+c2,则=90°;若满足b2>c2+a2,则∠B是角;若满足b2<c2+a2,则∠B是

角。

4.根据如图所示,利用面积法证明勾股定理。

 

七、课后练习

1.已知在Rt△ABC中,∠B=90°,a、b、c是△ABC的三边,则

⑴c=

(已知a、b,求c)

⑵a=。

(已知b、c,求a)

⑶b=。

(已知

a、c,求b)

2.如下表,表中所给的每行的三个数a、b、c,有a<b<c,试根据表中已有数的规律,写出当a=19时,b,c的值,并把b、c用含a的代数式表示出来。

3、4、5

32+42=52

5、12、13

52+122=132

7、24、25

72+242=252

9、40、41

92+402=412

……

……

19,b、c

192+b2=c2

3.在△ABC中,∠BAC=120°,AB=AC=

cm,一动点P从B向C以每秒2cm的速度移动,问当P点移动多少秒时,PA与腰垂直。

4.已知:

如图,在△ABC中,AB=AC,D在CB的延长线上。

求证:

⑴AD2-AB2=BD·CD

⑵若D在CB上,结论如何,试证明你的结论。

 

八、参考答案

课堂练习

1.略;

2.⑴∠A+∠B=90°;⑵CD=

AB;⑶AC=

AB;⑷AC2+BC2=AB2。

3.∠B,钝角,锐角;

4.提示:

因为S梯形ABCD=S△ABE+S△BCE+S△EDA,又因为S梯形ACDG=

(a+b)2,

S△BCE=S△EDA=

ab,S△ABE=

c2,

(a+b)2=2×

ab+

c2。

课后练习

1.⑴c=

;⑵a=

;⑶b=

2.

;则b=

,c=

;当a=19时,b=180,c=181。

3.5秒或10秒。

4.提示:

过A作AE⊥BC于E。

 

勾股定理

(二)

(王小学)

一、教学目标

1.会用勾股定理进行简单的计算。

2.树立数形结合的思想、分类讨论思想。

二、重点、难点

1.重点:

勾股定理的简单计算。

2.难点:

勾股定理的灵活运用。

3.难点的突破方法:

⑴数形结合,让学生每做一道题都画图形,并写出应用公式的过程或公式的推倒过程,在做题过程中熟记公式,灵活运用。

⑵分类讨论,让学生画好图后标图,从不同角度考虑条件和图形,考虑问题要全面,在讨论的过程中提高学生的灵活应用能力

⑶作辅助线,勾股定理的使用范围是在直角三角形中,因此要注意直角三角形的条件,要创造直角三角形,作高是常用的创造直角三角形的辅助线做法,在做辅助线的过程中,提高学生的综合应用能力。

⑷优化训练,在不条件、不同环境中反复运用定理,使学生达到熟练使用,灵活运用的程度。

三、例题的意图分析

例1(补充)使学生熟悉定理的使用,刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。

让学生明确在直角三角形中,已知任意两边都可以求出第三边。

并学会利用不同的条件转化为已知两边求第三边。

例2(补充)让学生注意所给条件的不确定性,知道考虑问题要全面,体会分类讨论思想。

例3(补充)勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。

让学生把前面学过的知识和新知识综合运用,提高综合能力。

四、课堂引入

复习勾股定

理的文字叙述;勾股定理的符号语言及变形。

学习勾股定理重在应用。

五、例习题分析

例1(补充)在Rt△ABC,∠C=90°

⑴已知a=b=5,求c。

⑵已知a=1,c=2,求b。

⑶已知c=17,b=8,求a。

⑷已知a:

b=1:

2,c=5,求a。

⑸已知b=15,∠A=30°,求a,c。

分析:

刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。

⑴已知两直角边,求斜边直接用勾股定理。

⑵⑶已知斜边和一直角边,求另一直角边,用勾股定理的便形式。

⑷⑸已知一边和两边比,求未知边。

通过前三题让学生明确在直角三角形中,已知任意两边都可以求出第三边。

后两题让学生明确已知一边和两边关系,也可以求出未知边,学会见比设参的数学方法,体会由角转化为边的关系

的转化思想。

例2(补充)已知直角三角形的两边长分别为5和12,求第三边。

分析:

已知两边中较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进形计算。

让学生知道考虑问题要全面,体会分类讨论思想。

例3(补充)已知:

如图,等边△ABC的边长是6cm。

⑴求等边△ABC的高。

⑵求S△ABC。

分析:

勾股定理的使用范围是在直角三角形中,因此注意要

创造直角三角形,作高是常用的创造直角三角形的辅助线做

法。

欲求高CD,可将其置身于Rt△ADC或Rt△BDC中,

但只有一边已

知,根据等腰三角形三线合一性质,可求AD=CD=

AB=3cm,则此题可解。

六、课堂练习

1.填空题

⑴在Rt△ABC,∠C=90°,a=8,b=15,则c=。

⑵在Rt△ABC,∠B=90°,a=3,b=4,则c=。

⑶在Rt△ABC,∠C=90°,c=10,a:

b=3:

4,则a=,b=。

⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为。

⑸已知直角三角形的两边长分别为3cm和5cm,,则第三边长为。

⑹已知等边三角形的边长为2cm,则它的高为,面积为。

2.已知:

如图,在△ABC中,∠C=60°,AB=

,AC=4,AD是BC边上的高,求BC的长。

3.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。

七、课后练习

1.填空题

在Rt△ABC,∠C=90°,

⑴如果a=7,c=25,则b=。

⑵如果∠A=30°,a=4,则b=。

⑶如果∠A=45°,a=3,则c=。

⑷如果c=10,a-b=2,则b=。

⑸如果a、b、c是连续整数,则a+b+c=。

⑹如果b=8,a:

c=3:

5,则c=。

2.已知:

如图,四边形ABCD中,AD∥BC,AD⊥DC,

AB⊥AC,∠B=60°,CD=1cm,求BC的长。

八、参考答案

课堂练习

1.17;

;6,8;6,8,10;4或

2.8;3.48。

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 节日庆典

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1