高分子物理习题答案6.docx

上传人:b****6 文档编号:8112195 上传时间:2023-01-28 格式:DOCX 页数:13 大小:31.09KB
下载 相关 举报
高分子物理习题答案6.docx_第1页
第1页 / 共13页
高分子物理习题答案6.docx_第2页
第2页 / 共13页
高分子物理习题答案6.docx_第3页
第3页 / 共13页
高分子物理习题答案6.docx_第4页
第4页 / 共13页
高分子物理习题答案6.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

高分子物理习题答案6.docx

《高分子物理习题答案6.docx》由会员分享,可在线阅读,更多相关《高分子物理习题答案6.docx(13页珍藏版)》请在冰豆网上搜索。

高分子物理习题答案6.docx

高分子物理习题答案6

高分子物理习题答案6

习题解答

第六章

题6-1试讨论非晶、结晶、交联和增塑高聚物的温度形变曲线的各种情况。

解:

非晶高聚物,随相对分子质量增加,温度-形变曲线如图6-1-1:

Tg1Tg2Tg3Tf1Tf2Tg4

Tg5

Tf3Tf4Tf5

T

M增加ε

图6-1-1非晶高聚物的温度-形变曲线

结晶高聚物、随结晶度和/或相对分子质量增加,温度-形变曲线如图6-1-2:

图6-1-2结晶高聚物的温度-形变曲线

交联高聚物,随交联度增加,温度-形变曲线如图6-1-3:

T

图6-1-3交联高聚物的温度-形变曲线

增塑高聚物。

随增塑剂含量增加,温度-形变曲线如图6-1-4:

ε

交联度增加

ε

增塑剂增加

T

对柔性链

 图6-1-4增塑高聚物的温度-形变曲线

题6-2选择填空:

甲、乙、丙三种高聚物,其温度形变曲线如图所示,此三种聚合物在常温下(  )。

(A)甲可作纤维,乙可作塑料,丙可作橡胶(B)甲可作塑料,乙可作橡胶,丙可作纤维(c)甲可作橡胶,乙可作纤维,丙可作塑料(D)甲可作涂料,乙可作纤维,丙可作橡胶解:

B

题6-3在热机械曲线上,为什么PMMA的高弹区范围比PS的大?

(已知PMMA的

Tg?

378K,Tf?

433—473K;PS的Tg?

373K,Tf?

383—423K)

解:

PMMA和PS的Tg差不多,都是100℃左右,这是因为PMMA的侧基极性较PS大,应使Tg增加,但PMMA侧基柔性比PS大,侧基比PS小,所以应使Tg减少,这两个因素互相抵消,故Tg差不多。

对于Tf来说,要使高聚物发生流动,分子与分子间的相对位置要发生显著变化。

因此分子间作用力的因素很重要。

PMMA极性大,分子间作用力,Tf就高,而PS分子间作用力小,Tf就低。

题6-4为什么热机械曲线上Tf的转折不如Tg明晰?

解:

因为Tf与相对分子质量有关,随相对分子质量增加,Tf持续增加。

而高分子的相对分子质量存在多分散性。

使Tf没有明晰的转折,而往往是一个较宽的软化区域。

题6-5下列物理量在Tg转变区域内,随着温度的改变如何变化?

并画出草图来。

比容,折光率,等压比热,杨氏模量,力学损耗角正切,膨胀系数。

解:

VnCp

TgTTgTTgT

图6-5-1比容-温度曲线  图6-5-2折射率-温度曲线  图6-5-3等压比热-温度曲线

Tg

T

Tg

T

Tg

T

α

E

tg?

图6-5-4杨氏模量-温度曲线  图6-5-5tg?

-T曲线  图6-5-6膨胀系数-温度曲线

题6-6怎样解释:

(1)聚合物Tg开始时随相对分子质量增大而升高,当相对分子质量达到一定值之后,Tg变为与相对分子质量无关的常数;

(2)聚合物中加入单体、溶剂、增塑剂等低分子物时导致Tg下降。

解:

相对分子质量对Tg的影响主要是链端的影响。

处于链末端的链段比链中间的链段受的牵制要小些,因而有比较剧烈的运动。

链端浓度的增加预期Tg会降低。

链端浓度与数均相对分子质量成反比,所以Tg与Mn-1成线性关系

Tg?

Tg?

KM?

n

n这里存在临界相对分子质量,超过后链端的比例很小,其影响可以忽略,所以Tg与M关系不大。

因为Tg具有可加和性。

单体、溶剂、增塑剂等低分子物得Tg较高分子低许多,所以混和物的Tg比聚合物本身Tg低。

Tg?

Tg?

?

kMn

题6-7甲苯的玻璃化温度Tgd=113K,假如以甲苯作为聚苯乙烯的增塑剂,试估计含有20%体积分数甲苯的聚苯乙烯的玻璃化温度Tg。

解:

Tg?

Tgp?

p?

Tgd?

d

∵Tgd=113K,Tgp=373K,θd=,θp=

∴Tg=321K

题6-8如果共聚物的自体积分数是两组分高聚物自体积分数的线性加和,试根据自体积理论推导共聚对Tg影响的关系式W2?

Tg?

Tg1k?

Tg2?

TgTg?

Tg1?

解:

设组分一和组分二的体积各为V1、V2

组分一的自体积Vf11?

T?

Tg1?

?

V1

?

?

组分二的自体积Vf22?

T?

Tg2?

?

V2

?

?

题目已假设共聚物的自体积分数两组分线性加和

Vf?

Vf1?

Vf2?

?

V1?

V21?

T?

Tg1?

V12?

T?

Tg2?

V2

VfV1?

V21?

T?

Tg1?

V1V1?

V22?

T?

Tg2?

V2V1?

V2f?

当T=Tg时,fg=同时令各组分体积分数?

1?

V1V1?

V2,?

2?

V2V1?

V2

?

?

1?

Tg?

Tg1?

?

12?

Tg?

Tg2?

?

2?

0

?

?

2?

?

1?

k

则?

Tg?

Tg1?

?

1?

k?

Tg2?

Tg?

?

2假设共聚物两组分的密度相等  则W1?

Tg?

Tg1?

?

W2k?

Tg2?

Tg?

?

1?

W2?

?

T?

T?

W2?

kgT2?

?

gTgg1?

W1?

W2?

1?

2

?

Tg?

Tg1?

?

W2?

Tg?

Tg1?

?

W2k?

Tg2?

Tg?

W2?

Tg?

Tg1k?

Tg2?

Tg?

?

Tg?

Tg1或Tg?

Tg1?

?

kTg2?

Tg1?

W21?

?

k?

1?

W2

题6-9.两类单体A和B无规共聚的线形聚合物的玻璃化温度T20=15℃。

A和B两种均聚物的玻璃化温度为TA=100℃和TB=5℃。

计算T80。

解:

将温度转换成绝对温度TA=373K,TB=278K,T20=288K。

a=

WA(1?

1TB)/(1Tg?

1TB)=

WBTA从而T80=340K=67℃

题6-10从化学结构角度讨论以下各对聚合物为什么存在Tg的差别.

(1)CH2CH2(150K)  和CH2CHCH3(250K)

(2)  CH2CHCO(283K)  和  CH2CHOCO(350K)OCH3CH3(3)  CH2CH2O(232K)和  CH2CHOH(358K)CH3(4)CH2CHCO(249K)和CH2CH2CHCO(378K)OC2H5OCH3

解:

后者较高,因为侧基CH3的内旋转空间障碍,刚性较大。

  前者较低,因为C=O靠近主链而使侧基柔性增加。

前者较低,因为氧原子在主链而使柔性增加,而后者侧基、极性和体积使柔性减少。

  前者较低,因为侧基柔性较大,后者不对称取代使刚性增加。

题6-11从结构出发排列出下列各组高聚物Tg顺序并简要说明理。

解:

下面列出Tg数据和/或比较大小,结构解释略。

 

G50℃CH3SiCH3A-123℃OHCHHCClC-108℃CH2CHCHCH2B87℃HHCCHCHnCHCH2CH2DNH?

CH25E100℃NHCOCH2COF-68℃4n所以D>E>B>G>F>C>A

CH2CHnClA87℃CH2ClCnClB-19℃CHClCHnClCH2CHCHClD-50℃CH2nC145℃

题7-2说明为什么橡胶急剧拉伸时,橡胶的温度上升,而缓慢拉伸时橡胶发热。

解:

急剧拉伸时

绝热条件下,对于无熵变dS?

0。

吉布斯自能的变化dG?

?

SdT?

VdP?

fdL?

?

Sf————?

T?

L?

L?

T?

?

P,T?

?

P,L?

G2∵?

dS?

PSS?

dT?

dLT?

L?

?

P,L?

?

P,TCP,LTTCP,L?

?

f?

dT?

?

dL?

0  ————T?

P,L?

?

f?

dL  ————T?

?

P,L?

∴?

dT?

S?

∵dL?

0,CP,L?

0,?

?

f?

T?

P,L?

0,∴?

dT?

S?

0  ————

此现象称为高夫-朱尔效应,是橡胶熵弹性的证明。

缓慢拉伸时

于等温条件,dT?

0,利用式,吸收的热量

?

d?

Q?

T?

?

f?

?

TdS?

?

T?

dLT?

P,L∵T?

0,dL?

0,?

?

f?

T?

P,L?

0∴?

d?

Q?

T?

0

题7-3在橡胶下悬一砝码,保持外界不变,升温时会发生什么现象?

解:

橡胶在张力的作用下产生形变,主要是熵变化,即卷曲的大分子链在张力的作用下变得伸展,构象数减少。

熵减少是不稳定的状态,当加热时,有利于单键的内旋转,使之因构象数增加而卷曲,所以在保持外界不变时,升温会发生回缩现象。

题7-4一交联橡胶试片,长,宽,厚,重,于25℃时将它拉伸一倍,测定张力为公斤,估算试样的网链的平均相对分子质量。

解:

橡胶状态方程RT?

Mc1?

2Mc?

?

RT?

?

fA1?

21?

4∵1?

10?

?

10kgm

?

3?

652?

?

WV1?

?

10?

925kgm

3?

?

2,R?

?

K,T?

298

925?

?

298?

1?

2?

?

52?

?

102?

?

∴Mc?

  ?

l(或?

8180gmol)

题7-5将某种硫化天然橡胶在300K进行拉伸,当伸长一倍时的拉力为×105N·m-2,拉伸过程中试样的泊松比为,根据橡胶弹性理论计算:

(1)10-6m3体积中的网链数N;

(2)初始弹性模量E0和剪切模量G0;  (3)拉伸时每10m体积的试样放出的热量?

解:

根据橡胶状态方程?

?

NkT1?

2-6

3

已知玻兹曼常数k?

?

10?

23JK

5210Nm,

?

?

2,T?

300?

K

∴N?

?

10510?

23?

300?

2?

14?

?

=1×1026个网链/m3

剪切模量G?

NkT1?

252  ?

?

10Nm?

2?

1?

4?

 ?

?

10Nm拉伸模量E?

2G?

1  ∵ν=

∴E?

3G?

?

10Nm

6252Q?

T?

S,?

S?

?

1?

22?

Nk3?

2  ∴Q?

?

1?

22?

NkT3?

2  代入N,k,T,λ的数值,得

Q10?

7J?

m?

3

题7-6讨论下述因素对蠕变实验的影响。

a.相对分子质量;b.交联;c.缠结数

解:

a.相对分子质量:

低于Tg时,非晶聚合物的蠕变行为与相对分子质量无关,高于Tg时,非晶或未交联的高聚物的蠕变受相对分子质量影响很大,这是因为蠕变速率首先决定于聚合物的黏度,而黏度又决定于相对分子质量。

根据次规律,聚合物的平衡零剪切黏度随重均相对分子质量的次方增加。

于是平衡流动区的斜率?

0/?

l随相对分子质量增加而大为减少,另一方面永久形变量(?

0/?

l)ts也因此减少。

相对分子质量较大蠕变速率较小。

b.交联:

低于Tg时,链的运动很小,交联对蠕变性能的影响很小,除非交联度很高。

但是,高于Tg时交联极大地影响蠕变,交联能使聚合物从黏稠液体变为弹性体。

对于理想的弹性体,当加负荷时马上伸长一定量,而且伸长率不随时间而变化,当负荷移去后,该聚合物能迅速回复到原来长度。

当交联度增加,聚合物表现出低的“蠕变”。

轻度交联的影响就好像相对分子质量无限增加的影响,分子链不能相互滑移,所以?

l变成无穷大,而且永久形变也消失了。

进一步交联,材料的模量增加,很高度交联时,材料成为玻璃态,在外力下行为就像虎克弹簧。

c.缠结数:

已发现低于一定相对分子质量时,黏度与相对分子质量成比例。

因为这一相对分子质量相应的分子链长已足以使聚合物产生缠结。

这种缠结如同暂时交联,使聚合物具有一定弹性。

因此相对分子质量增加时,缠结数增加,弹性和可回复蠕变量也增加。

但必须指出聚合物受拉伸,缠结减少,因此实验时间愈长则可回复蠕变愈小。

图7-6相对分子质量和交联对蠕变的影响

题7-7一块橡胶,直径60mm,长度200mm,当作用力施加于橡胶下部,半个小时后拉

长至300%(最大伸长600%)。

问:

(1)松弛时间?

(2)如果伸长至400%,需多长时间?

解:

?

?

t1?

e?

t?

?

已知?

?

t?

?

300%?

100%?

200%

600%?

100%?

500%

t?

∴300%?

500%?

1?

e?

t0?

  t?

?

题7-8有一未硫化生胶,已知其η=1010泊,E=109达因/厘米2,作应力松弛实验,当

所加的原始应力为100达因/cm时,求此试验开始后5秒钟时的残余应力。

解:

∵E,0?

e?

t?

2

?

E?

t?

∴0?

e

2已知E?

109dyncm2,?

?

1010泊,t?

5,?

0?

100dyncm

∴?

?

题7-9某个聚合物的黏弹性行为可以用模量为1010Pa的弹簧与黏度为的黏壶的串联模型描述。

计算突然施加一个1%应变50s后固体中的应力值。

解:

/E,η为松弛时间,η为黏壶的黏度,E为弹簧的模量,

所以η=100s。

?

=?

0exp=εEexp。

式中ε=10-2,s=50s

?

=10-2×1010exp=108exp=×108Pa

题7-10应力为×108N·m-2,瞬间作用于一个Voigt单元,保持此应力不变.若已知

该单元的本体黏度为×109Pa·s,模量为×100N·m-2,求该体系蠕变延长到200%时,需要多长时间?

解:

E?

?

10Pa?

?

10N?

m?

t?

98?

2?

?

?

t1?

e?

?

?

t?

?

?

0E?

1?

e?

t?

?

88100%?

t?

?

?

10?

1?

e?

?

t?

题7-11某聚合物受外力后,其形变按照下式

?

(t)?

?

0E(t)(1?

e?

t?

发展。

式中,σ0为最大应力;E(t)为拉伸到t时的模量。

今已知对聚合物加外力8s后,其应变为极限应变值的1/3。

求此聚合物的松弛时间为多少?

解:

?

?

t0E?

1?

e?

t?

?

当t0E?

t?

∴?

?

t1?

e?

t?

?

?

?

t1?

1?

e?

t?

3∴t?

20s

?

1?

e?

8?

题7-12为了减轻桥梁振动可在桥梁支点处垫以衬垫.当货车轮距为10米并以60公里/

小时通过桥梁时,欲缓冲其振动有下列几种高分子材料可供选择:

(1)η1=1010,E1=2×108;

(2)η2=108,E2=2×108;(3)η3=106,E3=2×108,问选哪一种合适?

解:

首先计算货车通过时对衬垫作用力时间。

已知货车速度为60,000m/h,而货车轮距为10m,

则每小时衬垫被压次数为f?

60,000货车车轮对衬垫的作用力时间为110?

6,000次/h,即次/s。

?

s/次。

三种高分子材料的η值如下:

?

1?

10102?

108?

50s?

2?

1082?

108?

68?

3?

102?

10?

根据上述计算可选择号材料,因其η值与货车车轮对桥梁支点的作用力时间具有相同的数量级,作为衬垫才可以达到吸收能量或减缓振动的目的。

题7-13一个纸杯装满水置于一张桌面上,用一发子弹桌面下部射入杯子,并从杯子的水

中穿出,杯子仍位于桌面不动.如果纸杯里装的是一杯高聚物的稀溶液,这次,子弹把杯子打出了8米远.用松弛原理解释之.

解:

低分子液体如水的松弛时间是非常短的,它比子弹穿过杯子的时间还要短,因而虽然子弹穿过水那一瞬间有黏性摩擦,但它不足以带走杯子。

高分子溶液的松弛时间比水大几个数量级,即聚合物分子链来不及响应,所以子弹将它的动量转换给这个“子弹-液体-杯子”体系,从而桌面把杯子带走了。

题7-14已知Maxwell模型的方程如下:

d?

dt?

1d?

Edt

而Voigt模型的方程如下:

d?

dtE?

?

d?

dtd?

dt推导此两个模型应力速率推导此两个模型应变速率答案:

d?

dt为常数时应变~时间关系方程;为常数时应力~时间关系方程。

=R

d?

dtRERE  Maxwell?

?

Rt?

Voigt  ?

(t)?

d?

dt?

t?

?

0?

1?

exp(?

t/?

0)?

?

=S

Maxwell?

(t)?

?

S?

1?

exp(?

t/?

0)?

Voigt  ?

(t)?

?

S?

ESt

题7-15对一种聚合物,用三个并联的Maxwell模型表示

E1=10N·m,τ1=10s

6

E2=10N·m-2,τ2=20s

E3=10N·m,τ3=30s

求加应力10秒后的松弛模量E。

解:

1?

?

2?

?

3

7

-2

5

-2

?

?

t1e?

t?

1?

?

2e?

t?

2?

?

3e?

t?

3

∴E?

tt1?

1e

?

2?

2?

3?

3  ?

?

t?

1?

e?

t?

2?

e?

t?

3

?

E1?

e?

t?

?

E2?

e?

t?

?

E3?

e12?

t?

3

7?

  ?

105?

e?

1010?

10?

e6?

1020?

10?

e

1030  ?

?

106N?

m?

2

题7-16假如某个体系含有两个Voigt单元,其元件参数是:

E1?

E2?

6?

KT和

?

1?

?

210?

?

E1,式中,ν为单位体积中交联网链的数目。

试导出这一体系在恒定应力ζ下的蠕变响应的表达式。

解:

两个Voigt单元串联模型如图7-15。

?

1?

?

1E1和?

2?

10?

1E1

?

10E1和?

20E11

E1η

1

∴?

?

t11?

e?

t?

  1?

e2?

t?

2?

E2η

2

?

0?

?

1?

e?

tE1E1?

1?

11?

?

tE110?

1?

tE?

  ?

0?

2?

e?

11?

eE1?

ζ

  图7-16两个Voigt单元串联模型

题7-17列举三个理说明为什么我们的黏弹模型不能用来说明结晶聚合物的行为。

解:

因为结晶型聚合物的黏弹性是很复杂的,因三点理不服从于理论解释:

a、无定形聚合物是各向同性的,也就是意味着为描述剪切应力而建立的模型也正好能用于描述拉伸应力。

然而,结晶聚合物不是各向同性的,所以任何模型的应用都受到严格的限制。

b、无定形聚合物是均相的,因此所加的应力能均匀分布到整个体系。

在结晶聚合物中,大量的结晶束缚在一起,因此这种束缚使得出现较大的应力集中。

c、结晶聚合物是不同结晶度的区域的混合物,当施加应力到结晶聚合物时,这些不同的区域的大小及分布随结晶的熔化和生长会发生连续变化。

也就是说任何机械模型都必须考虑对在结晶聚合物中这些连续的变化。

?

?

题7-18有一个动态力学实验中,应力0sin?

t,应变0sin(?

t?

?

),试指出

样品在极大扭曲时,弹性贮能(Wst)与一个完整周期内所消耗的功(?

W)之间的关系为:

?

WWst?

2?

tan?

?

2?

G()G(?

?

式中,G(?

?

)和G()分别为贮能模量和损耗模量.

解题意,应力和应变与交变频率、时间的关系如图7-22

图7-18应力和应变与交变频率、时间的关系

?

i?

i应力:

?

(t)?

?

0sin?

t?

?

0e

?

i(?

t?

?

)应变:

0sin(?

t?

?

)?

?

0e

切变模量:

G(?

)(t)?

(t)i0?

0ei?

i?

i(?

t?

?

?

G?

G?

(?

)e

(cos?

?

isin?

?

(?

)贮能模量:

G(?

?

)?

G?

(?

)cos?

?

  损耗模量:

G(?

?

?

)?

G(?

)sin?

一个周期内反抗应力作功(耗能):

?

W2?

?

0?

(t)d?

(t)?

?

G()?

0

12?

?

2一个周期内弹性贮能:

Wst?

2?

0?

(t)d?

(t)G(?

?

)?

0

2?

?

WWst?

2?

G(?

?

)G()?

2?

tan?

题7-19PMMA的力学损耗因子在130℃得到一峰值,假定测定频率是1周/秒.如果测

定改在1000周/秒,在什么温度下得到同样的峰值?

(已知PMMA的Tg=105℃)解:

?

T?

?

T?

g?

?

Tg?

T

?

?

T?

?

T?

Tglog?

T?

log?

Tg?

T?

?

思路分析:

130℃  Tg  ?

  1Hz  ?

  1000Hz第一步:

将测量从130℃、1Hz,移至105℃,求频率:

  log?

105?

?

130

?

6  ?

10510Hz

第二步:

将测量从105℃、?

10?

6Hz移至1000Hz,求T

?

6?

?

4T?

?

310  log931051.?

6T?

1?

05105  T=156℃

题7-20对聚异丁烯(PIB)在25℃10小时的应力松弛达到模量106达因/厘米-2.利用WLF

方程,在-20℃下要达到相同的模量需要多少时间.对PIBTg=-70℃解:

思路分析:

25℃  Tg  -20℃

10h  ?

  ?

?

tlog?

T?

tT?

gt25t?

7025?

70?

t?

?

log25?

t?

?

25?

70?

?

1212t?

70?

2?

10h

?

5?

10logt?

20t?

7020?

70?

?

20?

70?

9?

?

t?

20t?

70?

?

10

t?

20?

?

10h

3第二种方法:

logt25t20t?

20t?

70?

t25t?

70?

t25t?

20?

loglog?

log?

tttt?

70?

70?

?

70?

2025?

70?

?

25?

7020?

70?

?

20?

70?

?

loglog10t?

20?

?

t?

20?

?

10h

3其他作法分析:

从书上查得PIB的c1?

c2?

104,Tg?

202K?

?

71?

C,代入WLF方程计算得

t?

20?

?

10h。

结果出现差别的原因是这里c1和c2采用了PIB的实验值,而非普适值。

3

题7-3325℃下进行应力松弛实验,聚合物模量减少至105N/m3需要107h。

用WLF方程计算100℃下模量减少到同样值需要多久?

假设聚合物的Tg是25℃。

解:

log10aT?

logt100t25t100t25?

?

(100?

25)?

100?

25?

?

?

?

10?

11h

t100?

?

10?

11?

10h?

?

107?

4h

题7-21有一线型聚合物试样,其蠕变行为近似可用四元  力学模型来描述,蠕变试验时先加一应力σ=σ0,经  5秒钟后将应力σ增加为2σ0,求到10秒钟时试样的  形变值.

已知模型的参数为:

σ0=1×108N·m-2E1=5×108N·m-2E2=1×108N·m-2

η2=5×10Pa·s

10

η3=5×10Pa·s

解:

高聚物的总形变为

8

?

?

t1?

?

2?

?

3

?

?

0E1?

?

E02?

1?

e?

t03?

t

其中2E21088?

1s

当应力?

0?

?

108Pa时,5s时的形变值

?

0?

5?

?

1?

?

10?

1?

101?

1088?

1?

e?

?

5?

10?

511?

10810?

5?

10s时形变值可用同样方法得到:

?

0?

10?

?

本题10秒时总形变等于0秒和5秒时相继加上的应力ζ0所产生的形变的加和。

根据Bolzmann原理

?

?

100?

100?

5?

0  032.

题7-22说明为什么波尔兹曼叠加原理不适用于结晶聚合物?

解:

波兹曼叠加原理讨论了在不同时间下应力对聚合物的影响。

这是基于两个假设。

第一个假设是伸长与应力成正比例。

第二个假设是在一个给定的负荷下的伸长与在此之前的任何负荷引起的伸长无关。

对于结晶聚合物,结晶作用象交联一样改变了聚合物的蠕变行为,大大降低了聚合物的可变性,第一个假设已经没有根据了。

题7-23扭辨仪中的玻璃纤维能否用尼龙丝、铜丝或棉纤维做成的辫子代替。

为什么?

解:

不行。

因为尼龙本身是高分子化合物,也有内耗。

题7-24现有A聚苯乙烯与顺丁橡胶的共混物;B苯乙烯与丁二烯无规共聚的丁苯橡胶。

试比较两种样品的力学损耗因子与温度的动态力学曲线。

解:

丁二烯与苯乙烯只有无规共聚才是均一相的共聚物,其嵌段、接枝与共混都是两相结构。

均相与两相结构的鉴别常用测玻璃化温度和动态力学温度谱,对均相高聚物,只有一个

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 公共行政管理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1