高中物理压轴题解题方法与常用结论.docx

上传人:b****6 文档编号:8061612 上传时间:2023-01-28 格式:DOCX 页数:8 大小:22.58KB
下载 相关 举报
高中物理压轴题解题方法与常用结论.docx_第1页
第1页 / 共8页
高中物理压轴题解题方法与常用结论.docx_第2页
第2页 / 共8页
高中物理压轴题解题方法与常用结论.docx_第3页
第3页 / 共8页
高中物理压轴题解题方法与常用结论.docx_第4页
第4页 / 共8页
高中物理压轴题解题方法与常用结论.docx_第5页
第5页 / 共8页
点击查看更多>>
下载资源
资源描述

高中物理压轴题解题方法与常用结论.docx

《高中物理压轴题解题方法与常用结论.docx》由会员分享,可在线阅读,更多相关《高中物理压轴题解题方法与常用结论.docx(8页珍藏版)》请在冰豆网上搜索。

高中物理压轴题解题方法与常用结论.docx

高中物理压轴题解题方法与常用结论

高中物理压轴题解题方法与常用结论

1

力学综合型

力学综合试题往往呈现出研究对象的多体性、物理过程的复杂性、已知条件的隐含性、问题讨论的多样性、数学方法的技巧性和一题多解的灵活性等特点,能力要求较高.具体问题中可能涉及到单个物体单一运动过程,也可能涉及到多个物体,多个运动过程,在知识的考查上可能涉及到运动学、动力学、功能关系等多个规律的综合运用。

应试策略:

(1)对于多体问题:

要灵活选取研究对象,善于寻找相互联系。

选取研究对象和寻找相互联系是求解多体问题的两个关键.选取研究对象需根据不同的条件,或采用隔离法,即把研究对象从其所在的系统中抽取出来进行研究;或采用整体法,即把几个研究对象组成的系统作为整体来进行研究;或将隔离法与整体法交叉使用。

(2)对于多过程问题:

要仔细观察过程特征,妥善运用物理规律。

观察每一个过程特征和寻找过程之间的联系是求解多过程问题的两个关键.分析过程特征需仔细分析每个过程的约束条件,如物体的受力情况、状态参量等,以便运用相应的物理规律逐个进行研究。

至于过程之间的联系,则可从物体运动的速度、位移、时间等方面去寻找。

(3)对于含有隐含条件的问题:

要注重审题,深究细琢,努力挖掘隐含条件。

注重审题,深究细琢,综观全局重点推敲,挖掘并应用隐含条件,梳理解题思路或建立辅助方程,是求解的关键。

通常,隐含条件可通过观察物理现象、认识物理模型和分析物理过程,甚至从试题的字里行间或图象图表中去挖掘。

(4)对于存在多种情况的问题:

要认真分析制约条件,周密探讨多种情况。

解题时必须根据不同条件对各种可能情况进行全面分析,必要时要自己拟定讨论方案,将问题根据一定的标准分类,再逐类进行探讨,防止漏解。

2

带电粒子运动型

带电粒子运动型计算题大致有两类,一是粒子依次进入不同的有界场区,二是粒子进入复合场区.近年来高考重点就是受力情况和运动规律分析求解,周期、半径、轨迹、速度、临界值等.再结合能量守恒和功能关系进行综合考查。

应试策略:

正确分析带电粒子的受力及运动特征是解决问题的前提:

①带电粒子在复合场中做什么运动,取决于带电粒子所受的合外力及初始状态的速度,因此应把带电粒子的运动情况和受力情况结合起来进行分析,当带电粒子在复合场中所受合外力为零时,做匀速直线运动(如速度选择器)。

②带电粒子所受的重力和电场力等值反向,洛伦磁力提供向心力,带电粒子在垂直于磁场的平面内做匀速圆周运动。

③带电粒子所受的合外力是变力,且与初速度方向不在一条直线上,粒子做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线,由于带电粒子可能连续通过几个情况不同的复合场区,因此粒子的运动情况也发生相应的变化,其运动过程可能由几种不同的运动阶段组成。

3

电磁感应型

电磁感应是高考考查的重点和热点,命题频率较高的知识点有:

感应电流的产生条件、方向的判定和感应电动势的计算;电磁感应现象与磁场、电路、力学、能量等知识相联系的综合题及感应电流(或感应电动势)的图象问题.从计算题型看,主要考查电磁感应现象与直流电路、磁场、力学、能量转化相联系的综合问题,主要以大型计算题的形式考查。

应试策略:

在分析过程中,要注意通电导体在磁场中将受到安培力分析;电磁感应问题往往与力学问题联系在一起。

解决问题的基本思路:

①用法拉第电磁感应定律及楞次定律求感应电动势的大小及方向;

②求电路中的电流;

③分析导体的受力情况;

④根据平衡条件或者牛顿第二运动定律列方程。

解题过程中要紧紧地抓住能的转化与守恒分析问题.电磁感应现象中出现的电能,一定是由其他形式的能转化而来,具体问题中会涉及多种形式的能之间的转化,机械能和电能的相互转化、内能和电能的相互转化。

分析时,应当牢牢抓住能量守恒这一基本规律,明确有哪些力做功,就可知道有哪些形式的能量参与了相互转化,如摩擦力在相对位移上做功,必然有内能出现;重力做功,必然有重力势能参与转化;安培力做负功就会有其他形式能转化为电能,安培力做正功必有电能转化为其他形式的能;然后利用能量守恒列出方程求解。

4

力电综合型

力学中的静力学、动力学、功和能等部分,与电学中的场和路有机结合,出现了涉及力学、电学知识的综合问题。

主要表现为:

带电体在场中的运动或静止,通电导体在磁场中的运动或静止;交、直流电路中平行板电容器形成的电场中带电体的运动或静止;电磁感应提供电动势的闭合电路等问题。

这四类又可结合并衍生出多种多样的表现形式。

从历届高考中,力电综合型有如下特点:

①力、电综合命题多以带电粒子在复合场中的运动.电磁感应中导体棒动态分析,电磁感应中能量转化等为载体,考查学生理解、推理、综合分析及运用数学知识解决物理问题的能力。

②力、电综合问题思路隐蔽,过程复杂,情景多变,在能力立意下,惯于推陈出新、情景重组,设问巧妙变换,具有重复考查的特点。

应试策略:

解决力电综合问题,要注重掌握好两种基本的分析思路:

一是按时间先后顺序发生的综合题,可划分为几个简单的阶段,逐一分析清楚每个阶段相关物理量的关系规律,弄清前一阶段与下一阶段的联系,从而建立方程求解的“分段法”。

一是在同一时间内发生几种相互关联的物理现象,须分解为几种简单的现象,对每一种现象利用相应的概念和规律建立方程求解的“分解法”。

研究某一物体所受到力的瞬时作用力与物体运动状态的关系(或加速度)时,一般用牛顿运动定律解决;涉及做功和位移时优先考虑动能定理;对象为一系统,且它们之间有相互作用时,优先考虑能的转化与守恒定律。

5

信息处理型

信息处理型试题是指试题提供一些有关信息,然后要求考生根据所学知识,将有用的信息收集起来,经过处理后运用已经的知识、方法和手段解决新问题。

这类题型主要涉及到知识理解、过程分析、模型转换、方法处理等。

信息提供的方式主要有文字信息和图表信息。

文字信息往往是文字阅读量比较大,要求考生从文字信息中找到有用的信息来进行处理;图片信息包括结构图和函数关系图像等。

应试策略:

这种题型的处理思路和步骤为:

①领会问题的情境,在所给的信息中获取有用的信息,构造相应的物理模型;

②合理选择研究对象;分析研究对象受力情况、状态、能量等信息;

③运用试题所给规律、方法或自己已经掌握物理规律和方法求解。

高考物理常用结论

1.若三个力大小相等方向互成120°,则其合力为零。

2.几个互不平行的力作用在物体上,使物体处于平衡状态,则其中一部分力的合力必与其余部分力的合力等大反向。

3.在匀变速直线运动中,任意两个连续相等的时间内的位移之差都相等,即Δx=aT2(可判断物体是否做匀变速直线运动),推广:

xm-xn=(m-n)aT2。

4.在匀变速直线运动中,任意过程的平均速度等于该过程中点时刻的瞬时速度。

即vt/2=v平均。

5.对于初速度为零的匀加速直线运动

(1)T末、2T末、3T末、…的瞬时速度之比为:

v1:

v2:

v3:

…:

vn=1:

2:

3:

…:

n。

(2)T内、2T内、3T内、…的位移之比为:

x1:

x2:

x3:

…:

xn=12:

22:

32:

…:

n2。

(3)第一个T内、第二个T内、第三个T内、…的位移之比为:

xⅠ:

xⅡ:

xⅢ:

…:

xn=1:

3:

5:

…:

(2n-1)。

(4)通过连续相等的位移所用的时间之比:

t1:

t2:

t3:

…:

tn=1:

(21/2-1):

(31/2-21/2):

…:

[n1/2-(n-1)1/2]。

6.物体做匀减速直线运动,末速度为零时,可以等效为初速度为零的反向的匀加速直线运动。

7.对于加速度恒定的匀减速直线运动对应的正向过程和反向过程的时间相等,对应的速度大小相等(如竖直上抛运动)

8.质量是惯性大小的唯一量度。

惯性的大小与物体是否运动和怎样运动无关,与物体是否受力和怎样受力无关,惯性大小表现为改变物理运动状态的难易程度。

9.做平抛或类平抛运动的物体在任意相等的时间内速度的变化都相等,方向与加速度方向一致(即Δv=at)。

10.做平抛或类平抛运动的物体,末速度的反向延长线过水平位移的中点。

11.物体做匀速圆周运动的条件是合外力大小恒定且方向始终指向圆心,或与速度方向始终垂直。

12.做匀速圆周运动的物体,在所受到的合外力突然消失时,物体将沿圆周的切线方向飞出做匀速直线运动;在所提供的向心力大于所需要的向心力时,物体将做向心运动;在所提供的向心力小于所需要的向心力时,物体将做离心运动。

13.开普勒第一定律的内容是所有的行星围绕太阳运动的轨道都是椭圆,太阳在椭圆轨道的一个焦点上。

开普勒第三定律的内容是所有行星的半长轴的三次方跟公转周期的平方的比值都相等,即R3/T2=k。

14.地球质量为M,半径为R,万有引力常量为G,地球表面的重力加速度为g,则其间存在的一个常用的关系是。

(类比其他星球也适用)

15.第一宇宙速度(近地卫星的环绕速度)的表达式v1=(GM/R)1/2=(gR)1/2,大小为7.9m/s,它是发射卫星的最小速度,也是地球卫星的最大环绕速度。

随着卫星的高度h的增加,v减小,ω减小,a减小,T增加。

16.第二宇宙速度:

v2=11.2km/s,这是使物体脱离地球引力束缚的最小发射速度。

17.第三宇宙速度:

v3=16.7km/s,这是使物体脱离太阳引力束缚的最小发射速度。

18.对于太空中的双星,其轨道半径与自身的质量成反比,其环绕速度与自身的质量成反比。

19.做功的过程就是能量转化的过程,做了多少功,就表示有多少能量发生了转化,所以说功是能量转化的量度,以此解题就是利用功能关系解题。

20.滑动摩擦力,空气阻力等做的功等于力和路程的乘积。

21.静摩擦力做功的特点:

(1)静摩擦力可以做正功,可以做负功也可以不做功。

(2)在静摩擦力做功的过程中,只有机械能的相互转移(静摩擦力只起到传递机械能的作用),而没有机械能与其他能量形式的相互转化。

(3)相互摩擦的系统内,一对静摩擦力所做的功的总和等于零。

22.滑动摩擦力做功的特点:

(1)滑动摩擦力可以对物体做正功,可以做负功也可以不做功。

(2)一对滑动摩擦力做功的过程中,能量的分配有两个方面:

一是相互摩擦的物体之间的机械能的转移;二是系统机械能转化为内能;转化为内能的量等于滑动摩擦力与相对路程的乘积,即Q=f.Δs相对。

23.若一条直线上有三个点电荷,因相互作用而平衡,其电性及电荷量的定性分布为“两同夹一异,两大夹一小”。

24.匀强电场中,任意两点连线中点的电势等于这两点的电势的平均值。

在任意方向上电势差与距离成正比。

25.正电荷在电势越高的地方,电势能越大,负电荷在电势越高的地方,电势能越小。

26.电容器充电后和电源断开,仅改变板间的距离时,场强不变。

27.两电流相互平行时无转动趋势,同向电流相互吸引,异向电流相互排斥;两电流不平行时,有转动到相互平行且电流方向相同的趋势。

28.带电粒子在磁场中仅受洛伦兹力时做圆周运动的周期与粒子的速率、半径无关,仅与粒子的质量、电荷和磁感应强度有关。

29.带电粒子在有界磁场中做圆周运动:

(1)速度偏转角等于扫过的圆心角。

(2)几个出射方向:

①粒子从某一直线边界射入磁场后又从该边界飞出时,速度与边界的夹角相等。

②在圆形磁场区域内,沿径向射入的粒子,必沿径向射出——对称性。

③刚好穿出磁场边界的条件是带电粒子在磁场中的轨迹与边界相切。

(3)运动的时间:

轨迹对应的圆心角越大,带电粒子在磁场中的运动时间就越长,与粒子速度的大小无关。

[t=θT/(2π)=θm/(qB)]

30.速度选择器模型:

带电粒子以速度v射入正交的电场和磁场区域时,当电场力和磁场力方向相反且满足v=E/B时,带电粒子做匀速直线运动(被选择)与带电粒子的带电荷量大小、正负无关,但改变v、B、E中的任意一个量时,粒子将发生偏转。

31.回旋加速器

(1)为了使粒子在加速器中不断被加速,加速电场的周期必须等于回旋周期。

(2)粒子做匀速圆周运动的最大半径等于D形盒的半径。

(3)在粒子的质量、电荷量确定的情况下,粒子所能达到的最大动能只与D形盒的半径和磁感应强度有关,与加速器的电压无关(电压只决定了回旋次数)。

(4)将带电粒子在两盒之间的运动首尾相连起来是一个初速度为零的匀加速直线运动,带电粒子每经过电场加速一次,回旋半径就增大一次,故各次半径之比为1:

21/2:

31/2:

…:

n1/2。

32.在没有外界轨道约束的情况下,带电粒子在复合场中三个场力(电场力、洛伦磁力、重力)作用下的直线运动必为匀速直线运动;若为匀速圆周运动则必有电场力和重力等大、反向。

33.在闭合电路中,当外电路的任何一个电阻增大(或减小)时,电路的总电阻一定增大(或减小)。

34.滑动变阻器分压电路中,总电阻变化情况与滑动变阻器串联段电阻变化情况相同。

35.若两并联支路的电阻之和保持不变,则当两支路电阻相等时,并联总电阻最大;当两支路电阻相差最大时,并联总电阻最小。

36.电源的输出功率随外电阻变化,当内外电阻相等时,电源的输出功率最大,且最大值Pm=E2/(4r)。

37.导体棒围绕棒的一端在垂直磁场的平面内做匀速圆周运动而切割磁感线产生的电动势E=BL2ω/2。

38.对由n匝线圈构成的闭合电路,由于磁通量变化而通过导体某一横截面的电荷量q=nΔΦ/R。

39.在变加速运动中,当物体的加速度为零时,物体的速度达到最大或最小——常用于导体棒的动态分析。

40.安培力做多少正功,就有多少电能转化为其他形式的能量;安培力做多少负功,就有多少其他形式的能量转化为电能,这些电能在通过纯电阻电路时,又会通过电流做功将电能转化为内能。

41.在Φ-t图象(或回路面积不变时的B-t图象)中,图线的斜率既可以反映电动势的大小,又可以反映电源的正负极。

42.交流电的产生:

计算感应电动势的最大值用Em=nBSω;计算某一段时间Δt内的感应电动势的平均值用E平均=nΔΦ/Δt,而E平均不等于对应时间段内初、末位置的算术平均值。

即E平均≠E1+E2/2,注意不要漏掉n。

43.只有正弦交流电,物理量的最大值和有效值才存在21/2倍的关系。

对于其他的交流电,需根据电流的热效应来确定有效值。

44.回复力与加速度的大小始终与位移的大小成正比,方向总是与位移方向相反,始终指向平衡位置。

45.做简谐运动的物体的振动是变速直线运动,因此在一个周期内,物体运动的路程是4A,半个周期内,物体的路程是2A,但在四分之一个周期内运动的路程不一定是A。

46.每一个质点的起振方向都与波源的起振方向相同。

47.对于干涉现象

(1)加强区始终加强,减弱区始终减弱。

(2)加强区的振幅A=A1+A2,减弱区的振幅A=|A1-A2|。

48.相距半波长的奇数倍的两质点,振动情况完全相反;相距半波长的偶数倍的两质点,振动情况完全相同。

49.同一质点,经过Δt=nT(n=0、1、2…),振动状态完全相同,经过Δt=nT+T/2(n=0、1、2…),振动状态完全相反。

50.小孔成像是倒立的实像,像的大小由光屏到小孔的距离而定。

51.根据反射定律,平面镜转过一个微小的角度α,法线也随之转动α,反射光则转过2α。

52.光由真空射向三棱镜后,光线一定向棱镜的底面偏折,折射率越大,偏折程度越大。

通过三棱镜看物体,看到的是物体的虚像,而且虚像向棱镜的顶角偏移,如果把棱镜放在光密介质中,情况则相反。

53.光线通过平行玻璃砖后,不改变光线行进的方向及光束的性质,但会使光线发生侧移,侧移量的大小跟入射角、折射率和玻璃砖的厚度有关。

54.光的颜色是由光的频率决定的,光在介质中的折射率也与光的频率有关,频率越大的光折射率越大。

55.用单色光做双缝干涉实验时,当两列光波到达某点的路程差为半波长的偶数倍时,该处的光互相加强,出现亮条纹;当到达某点的路程差为半波长的奇数倍时,该处的光互相减弱,出现暗条纹。

56.电磁波在介质中的传播速度跟介质和频率有关;而机械波在介质中的传播速度只跟介质有关。

57.质子和中子统称为核子,相邻的任何核子间都存着核力,核力为短程力。

距离较远时,核力为零。

58.半衰期的大小由放射性元素的原子核内部本身的因素决定,跟物体所处的物理状态或化学状态无关。

59.使原子发生能级跃迁时,入射的若是光子,光子的能量必须等于两个定态的能级差或超过电离能;入射的若是电子,电子的能量必须大于或等于两个定态的能级差。

60.原子在某一定态下的能量值为En=E1/n2,该能量包括电子绕核运动的动能和电子与原子核组成的系统的电势能。

61.动量的变化量的方向与速度变化量的方向相同,与合外力的冲量方向相同,在合外力恒定的情况下,物体动量的变化量方向与物体所受合外力的方向相同,与物体加速度的方向相同。

62.F合Δt=ΔP→F合=ΔP/Δt这是牛顿第二定律的另一种表示形式,表述为物体所受的合外力等于物体动量的变化率。

63.碰撞问题遵循三个原则:

①总动量守恒;②总动能不增加;③合理性(保证碰撞的发生,又保证碰撞后不再发生碰撞)。

64.完全非弹性碰撞(碰撞后连成一个整体)中,动量守恒,机械能不守恒,且机械能损失最大。

65.爆炸的特点是持续时间短,内力远大于外力,系统的动量守恒。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 幼儿读物

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1