Wall Boiling Models.docx

上传人:b****5 文档编号:8051223 上传时间:2023-01-28 格式:DOCX 页数:11 大小:70.07KB
下载 相关 举报
Wall Boiling Models.docx_第1页
第1页 / 共11页
Wall Boiling Models.docx_第2页
第2页 / 共11页
Wall Boiling Models.docx_第3页
第3页 / 共11页
Wall Boiling Models.docx_第4页
第4页 / 共11页
Wall Boiling Models.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

Wall Boiling Models.docx

《Wall Boiling Models.docx》由会员分享,可在线阅读,更多相关《Wall Boiling Models.docx(11页珍藏版)》请在冰豆网上搜索。

Wall Boiling Models.docx

WallBoilingModels

17.5.16. WallBoilingModels

17.5.16.1. Overview

Theterm“subcooledboiling”isusedtodescribethephysicalsituationwherethewalltemperatureishighenoughtocauseboilingtooccuratthewalleventhoughthebulkvolumeaveragedliquidtemperatureislessthanthesaturationvalue.Insuchcases,theenergyistransferreddirectlyfromthewalltotheliquid.Partofthisenergywillcausethetemperatureoftheliquidtoincreaseandpartwillgeneratevapor.Interphaseheattransferwillalsocausetheaverageliquidtemperaturetoincrease,however,thesaturatedvaporwillcondense.Additionally,someoftheenergymaybetransferreddirectlyfromthewalltothevapor.ThesebasicmechanismsarethefoundationsofthesocalledRensselaerPolytechnicInstitute(RPI)models.

InANSYSFLUENT,thewallboilingmodelsaredevelopedinthecontextoftheEulerianmultiphasemodel.Themultiphaseflowsaregovernedbytheconservationequationsforphasecontinuity(Equation 17–119),momentum(Equation 17–120),andenergy(Equation 17–126).ThewallboilingphenomenonismodeledbytheRPInucleateboilingmodelofKurualandPodowski[190]andanextendedformulationforthedepartednucleateboilingregime(DNB)byLavievilleetal[200].

Thewallboilingmodelsarecompatiblewiththreedifferentwallboundaries:

isothermalwall,specifiedheatflux,andspecifiedheattransfercoefficient(coupledwallboundary).

Specificsubmodelshavebeenconsideredtoaccountfortheinterfacialtransfersofmomentum,mass,andheat,aswellasturbulencemodelsinboilingflows,asdescribedbelow.

Tolearnhowtosetuptheboilingmodel,pleaserefertoIncludingtheBoilingModel.

17.5.16.2. RPIModel

AccordingtothebasicRPImodel,thetotalheatfluxfromthewalltotheliquidispartitionedintothreecomponents,namelytheconvectiveheatflux,thequenchingheatflux,andtheevaporativeheatflux:

(17–274)

Theheatedwallsurfaceissubdividedintoarea

 ,whichiscoveredbynucleatingbubblesandaportion

 ,whichiscoveredbythefluid.

∙Theconvectiveheatflux

 isexpressedas

(17–275)

where

 isthesinglephaseheattransfercoefficient,and

 and

 arethewallandliquidtemperatures,respectively.

∙Thequenchingheatflux

 modelsthecyclicaveragedtransientenergytransferrelatedtoliquidfillingthewallvicinityafterbubbledetachment,andisexpressedas

(17–276)

Where

 istheconductivity,

 istheperiodictime,and

 isthediffusivity.

∙Theevaporativeflux

 isgivenby

(17–277)

Where

 isthevolumeofthebubblebasedonthebubbledeparturediameter,

 istheactivenucleatesitedensity,

 isthevapordensity,and

 isthelatentheatofevaporation,and

 isthebubbledeparturefrequency.Theseequationsneedclosureforthefollowingparameters:

∙AreaofInfluence

Itsdefinitionisbasedonthedeparturediameterandthenucleatesitedensity:

(17–278)

Notethatinordertoavoidnumericalinstabilitiesduetounboundempiricalcorrelationsforthenucleatesitedensity,theareaofinfluencehastoberestricted.Theareaofinfluenceislimitedasfollows:

(17–279)

Thevalueoftheempiricalconstant

 isusuallysetto4,howeverithasbeenfoundthatthisvalueisnotuniversalandmayvarybetween1.8and5.ThefollowingrelationforthisconstanthasalsobeenimplementedbasedonDelValleandKenning'sfindings[77]:

(17–280)

and

 isthesubcooledJacobnumberdefinedas

(17–281)

∙FrequencyofBubbleDeparture

ImplementationoftheRPImodelnormallyusesthefrequencyofbubbledepartureastheonebasedoninertiacontrolledgrowth(notreallyapplicabletosubcooledboiling)[64]

(17–282)

∙NucleateSiteDensity

Thenucleatesitedensityisusuallyrepresentedbyacorrelationbasedonthewallsuperheat.Thegeneralexpressionisoftheform

(17–283)

HeretheempiricalparametersfromLemmertandChawla[205]areused,where

 and

 .Otherformulationsarealsoavailable,suchasKocamustafaogullariandIshii[184]where

(17–284)

Here

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where

 isthebubbledeparturediameterandthedensityfunctionisdefinedas

(17–285)

∙BubbleDepartureDiameter

Thedefaultbubbledeparturediameter(mm)fortheRPImodelisbasedonempiricalcorrelations[190]andiscalculatedas

(17–286)

whileKocamustafaogullariandIshii[184]use

(17–287)

with

 beingthecontactangleindegrees.

17.5.16.3. Non-equilibriumSubcooledBoiling

WhenusingthebasicRPImodel,thetemperatureofthevaporisnotcalculated,insteaditisfixedatthesaturationtemperature.InordertomodeldifferentboilingregimeslikeDNBandcriticalheatflux,itisnecessarytoincludethevaportemperatureinthesolutionprocess.Thewallheatpartitionisnowmodifiedasfollows:

(17–288)

Here

 isthediffusiveheatfluxofthevaporbubblephase,

 isthevaporheattransfercoefficientbasedonturbulentwallfunctions.Thefunction

 dependsonthelocalliquidvolumefractionwithsimilarlimitingvaluesastheliquidvolumefraction.Lavievilleetal[200]proposedthefollowingexpression:

(17–289)

Here,thecriticalvalueforthevaporfractionis

 

17.5.16.4. InterfacialMomentumTransfer

Theinterfacialmomentumtransfermayincludefourparts:

drag,lift,virtualmassandturbulentdriftforces(alldescribedinConservationEquations,InterphaseExchangeCoefficients,andTurbulenceModels.Inthewallboilingmodels,thevirtualmassforceismodeledusingthestandardcorrelationimplementedintheEulerianmultiphasemodelwithinANSYSFLUENT,whilespecificsub-modelshavebeenimplementedfordrag,lift,andturbulentdriftforces.Also,user-definedoptionsareavailableforbothdragandliftforces.

17.5.16.4.1. InterfacialArea

Theinterfacialareaisanimportantparameterforthedragandtheheattransferprocess.Fordispersedboiling,theinterfacialarea,basedonthediameterofthebubble,wouldbeenough.However,asbubblecoalescencetakesplace,thisneedstobemodified.Thefollowingoptionsareincluded:

(17–290)

(17–291)

(17–292)

17.5.16.4.2. InterfacialDragForce

TheinterfacialdragforceiscalculatedusingthestandardmodeldescribedinInterphaseExchangeCoefficients(anddefinedinthecontextoftheinterfacialareainEquation 17–290)isofthegeneralform

(17–293)

Wherethedragcoefficient

 isdeterminedbychoosingtheminimumoftheviscousregime

 andthedistortedregime

 ,definedasfollows:

(17–294)

Thebubblediameter

 canbeaconstantvalue,aUDF,oracorrelationfunctionoflocalsubcooling

 [190]:

(17–295)

17.5.16.4.3. InterfacialLiftForce

ThecoefficientfortheinterfacialliftforceiscalculatedusingthecorrelationproposedbyMoragaetal.[262]:

(17–296)

Where

 .Theliftcoefficientcombinestheopposingactionoftwoliftforces:

theclassicalaerodynamicsliftforceresultingfrominteractionbetweenbubbleandliquidshear,andthelateralforceresultingfrominteractionbetweenbubbleandvortexesshedbybubblewakes.Here

 isthebubbleReynoldsnumber,and

 isthebubbleshearReynoldsnumber.

TheformulationproposedbyTomiyamaetal.[441]isalsoavailablewiththeliftcoefficientexpressedas

 ,where

(17–297)

and

(17–298)

where

 isthebubbleReynoldsnumberand

(17–299)

istheEötvosnumber,with

 asthegravitationalaccelerationand

 thesurfacetensionnumber.

17.5.16.4.4. TurbulenceDriftForce

IntheANSYSFLUENTEulerianmultiphasemodel,thegeneralcorrelationforturbulencedriftforce(turbulentdispersion)isbasedonSimonin[351].DuetonumericalinstabilitiesthisforceisnowincludedintheRhie&Chowinterpolation[323]forthevolumefluxcalculations.Simonin’s[351]approachcanbealsousedfortheboilingmodel.However,forcompletenessoftheRPImodel,thedefaultfortheturbulentdriftforceisgivenby

(17–300)

Wheretheturbulentdispersioncoefficient

 is,bydefault,setto1.0

17.5.16.5. InterfacialHeatTransfer

17.5.16.5.1. VaportoLiquidHeatTransfer

Asthebubblesdepartfromthewallandmovetowardsthesubcooledregion,thereisheattransferfromthebubbletotheliquid,thatisdefinedas

(17–301)

Where

 istheinterfacialareadefinedbyEquation 17–291and

 istheheattransfercoefficientbasedontheRanz-Marshallcorrelation[315]

(17–302)

17.5.16.5.2. SuperheatedLiquidtoVaporHeatTransfer

Theinterfacetovaporheattransferiscalculatedusingtheconstanttimescalereturntosaturationmethod[200].Itisassumedthatthevaporretainsthesaturationtemperaturebyrapidevaporation/condensation.Theformulationisasfollows:

(17–303)

Where

 isthetimescalesettoadefaultvalueof0.05and

 istheisobaricheatcapacity.

17.5.16.6. MassTransfer

17.5.16.6.1. MassTransferFromtheWalltoVapor

Theevaporationmassflowisappliedatthecellnearthewallanditisderivedfromtheevaporationheatflux,Equation 17–303

(17–304)

17.5.16.6.2. InterfacialMassTransfer

Theinterfacialmasstransferdependsdirectlyontheinterfacialheattransfer.Assumingthatalltheheattransferredtotheinterfaceisusedinmasstransfer(i.e.evaporationorcondensation),theinterfacialmasstransferratecanbewrittenas:

(17–305)

17.5.16.7. TurbulenceModels

Turbulencequantitiesdependonthemodelsselectedfortheproblem,i.e.Mixturemodel,DispersedModelorModelperphase.Fortheconventionalmixturek-epsilonmodels,twoadditionalte

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工作范文 > 行政公文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1