八年级上学期期末复习综合题.docx

上传人:b****5 文档编号:8001143 上传时间:2023-01-27 格式:DOCX 页数:14 大小:238.95KB
下载 相关 举报
八年级上学期期末复习综合题.docx_第1页
第1页 / 共14页
八年级上学期期末复习综合题.docx_第2页
第2页 / 共14页
八年级上学期期末复习综合题.docx_第3页
第3页 / 共14页
八年级上学期期末复习综合题.docx_第4页
第4页 / 共14页
八年级上学期期末复习综合题.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

八年级上学期期末复习综合题.docx

《八年级上学期期末复习综合题.docx》由会员分享,可在线阅读,更多相关《八年级上学期期末复习综合题.docx(14页珍藏版)》请在冰豆网上搜索。

八年级上学期期末复习综合题.docx

八年级上学期期末复习综合题

22.(本题满分8分)为响应环保组织提出的“低碳生活”的号召,李明决定不开汽车而改骑自行车上班.有一天,李明骑自行车从家里到工厂上班,途中因自行车发生故障,修车耽误了一段时间,车修好后继续骑行,直至到达工厂(假设在骑自行车过程中匀速行驶).李明离家的距离y(米)与离家时间x(分钟)的关系表示如下图:

(1)李明从家出发到出现故障时的速度为         米/分钟;

(2)李明修车用时           分钟;

(3)求线段BC所对应的函数关系式(不要求写出自变量的取值范围).

      

 

24.(本题满分8分)在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与x,y轴分别交于点A,B,则△OAB为此函数的坐标三角形.

(1)求函数y=-

x+3的坐标三角形的三条边长;    

(2)若函数y=-

x+b(b>0)的坐标三角形周长为16,求此三角形面积.

 

25.(本题满分10分)如图,在△ABC中,∠BAD=∠DAC,DF⊥AB,DM⊥AC,AF=10cm,AC=14cm,动点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t

(1)求证:

在运动过程中,不管t取何值,都有

(2)当t取何值时,△DFE与△DMG全等

 

31.(10分)甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每付定价20元,乒乓球每盒定价5元。

现两家商店搞促销活动。

甲店:

每买一付球拍赠一盒乒乓球;乙店:

按定价的9折优惠。

某班级需购球拍4付,乒乓球若干盒(不少于4盒)。

(1)设购买乒乓球盒数为x(盒),在甲店购买的付款数为y甲(元),在乙店购买的付款数为y乙(元),分别写出在两家商店购买的付款数与乒乓球盒数x之间的函数关系式。

(2)就乒乓球盒数讨论去哪家商店买合算?

3.已知,直线y=-x+4与分别交x轴、y轴于点A、B,P点的坐标为(-2,2)。

(1)求点A、B的坐标;

(2)求SΔPAB。

李强同学在解完求SΔPAB的面积后,进行了反思归纳:

已知三角形三个顶点的坐标,求三角形的面积通常有以下几种方法——

方法①:

直接计算法。

计算三角形的某一条边长,并求出该边上的高。

方法②:

分割法。

选择一条或几条直线,将原三角形分成若干个便于计算面积的三角形;方法

③:

补形法。

将原三角形的面积转化为若干个特殊的四边形或三角形的面

积之和或差。

请你根据李强同学的反思归纳,用三种不同的方法求SΔPAB。

 

5、

(1)如图①,A、B、C三点在同一直线上,分别以AC,BC为边在AB的同侧作等边△ACD和等边△BCE,连接AE、BD,M、N分别为AE、BD的中点,连接CM、CN、MN.则△CMN的形状是________三角形;

(2)如图②,A、B、C三点在同一直线上,分别以AC,BC为边在AB的同侧作等腰Rt△ACD和等腰Rt△BCE.∠ACD=∠BCE=90°,连接AE、BD,M、N分别为AE、BD的中点,连接

CM、CN,MN.则△CMN的形状是______三角形;

(3)如图③,在图②的基础上,将△BCE绕点C旋转一定的角度,其它条件不变,请将图形补充完整.试判断△CMN的形状,并说明理由.

 

6.已知:

如图,平面直角坐标系中,矩形OABC的顶点A(6,0)、B(6,4),D是BC的中点.动点P从O点出发,以每秒1个单位的速度,沿着OA、AB、BD运动.设P点运动的时间为t秒(0

(1)写出△POD的面积S与t之间的函数关系式,并求出△POD的面积等于9时点P的坐标;

(2)当点P在OA上运动时,连结CP.问:

是否存在某一时刻t,当CP绕点P旋转时,点C能恰好落到AB的中点M处?

若存在,请求出t的值并判断此时△CPM的形状;若不存在,请说明理由;

(3)当点P在AB上运动时,试探索当PO+PD的长最短时的直线PD的表达式。

7.如图,直线l:

交x、y轴分别为A、B两点,C点与A点关于y轴对称。

动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.

(1)、点A坐标是,点B的坐标,BC=.

(2)、当点P在什么位置时,△APQ≌△CBP

,说明理由。

(3)、当△PQB为等腰三角形时,求点P的坐标.

 

12.如图,直线y=-2x+4分别与x轴、y轴相交于点A和点B,如果线段CD两端点在坐标轴上滑动(C点在y轴上,D点在x轴上),且CD=AB.

(1)当△COD和△AOB全等时,求C、D两点的坐标;

(2)是否存在经过第一、二、三象限的直线CD,使CD⊥AB?

如果存在,请求出直线CD的解析式;如果不存在,请说明理由.

 

18、为了保护环境,某企业决定购买10台污水处理设备,现有A、B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如下表

A型

B型

价格(万元/台)

12

10

月处理污水量(吨/月)

240

200

年消耗费(万元/台)

1

1

经预算,该企业购买设备的资金不高于105万元。

(1)请问该企业有几种购买方案?

(2)若该企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案?

(3)在第

(2)问的前提下,若每台设备的使用年限为10年,污水厂处理费为10元/吨,该企业自

己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元?

 

20、在今年“五一黄金周”的某一天,小明全家上午8时自驾小汽车从家中出发,到距离180千米的某著名风景区游玩。

该小汽车离家的距离s(千米)

与时间t(小时)的关系可以用图5-1中的曲线表示。

根据图象提供的有关信息,解答下列问题:

(1)

小明全家在旅游景点游玩了多少小时?

(2)求出返程途中s与t的函数关系式,并回答小明全家到家是什么时间。

(3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为35升,汽车每行驶1千米耗油

升。

请你就“何时加油和加油量为多少升”给小明全家提出一个合理化的建议(加油时间忽略不计)。

35、一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动:

将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=a.

 

(1)如图1,两个三角尺的重叠部分为△ACM,则

重叠部分的面积为为;

(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为,周长为;

(3)如果将△MNK绕M旋转到不同于图1、图2的位置,如图3所示,猜想此时重叠部分的面积为多少?

并试着加以验证.

 

27.(7分)如图表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与

轴交于点B,且OA=OB,求这两个函数的关系式及两直线与

轴围成的三角形的面积.

 

29.(10分)如图①,一条笔直的公路上有A、B、C三地,B、C两地相距 150千米,甲、乙两辆汽车分别从B、C两地同时出发,沿公路匀速相向而行,分别驶往C、B两地.甲、乙两车到A 地的距离y1、y2(千米)与行驶时间x(时)的关系如图②所示.

 

根据图象进行以下探究:

(1)请在图①中标出 A地的位置,并作简要说明;

(2)甲的速度为6060 km/h,乙的速度为7575km/h;(3)求图②中M点的坐标,并解释该点的实际意义;(4)在图②中补全甲车到达C地的函数图象,求甲车到A地的距离y1与行驶时间x的函数关系式;(5)出发多长时间,甲、乙两车距A点的距离相等?

 

5.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是(  )

 A.

B.

C.

D.

考点:

一次函数的图象.

专题:

分类讨论.

分析:

由于a、b的符号均不确定,故应分四种情况讨论,找出合适的选项.

解答:

解:

分四种情况:

①当a>0,b>0时,y=ax+b和y=bx+a的图象均经过第一、二、三象限,不存在此选项;

②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限,y=bx+a的图象经过第一、二、四象限,选项A符合此条件;

③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限,y=bx+a的图象经过第一、三、四象限,不存在此选项;

④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限,y=bx+a的图象经过第二、三、四象限,不存在此选项.

故选A.

点评:

一次函数y=kx+b的图象有四种情况:

①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;

②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;

③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;

④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.

8.已知一次函数y=kx+b,当﹣3≤x≤1时,对应y的值为1≤y≤9.则k•b的值(  )

 A.14B.﹣6C.﹣6或21D.﹣6或14

考点:

待定系数法求一次函数解析式;一次函数图象与系数的关系.

专题:

分类讨论.

分析:

根据图象的增减性得出两种情况:

①过点(﹣3,1)和(1,9)②过点(﹣3,9)和(1,1)分别代入解析式,求出即可.

解答:

解:

分为两种情况:

①过点(﹣3,1)和(1,9)代入得:

则有

解之得

∴k•b=14;

②过点(﹣3,9)和(1,1)代入得:

则有

解之得

∴k•b=﹣6,

综上:

k•b=14或﹣6.

故选D.

点评:

此类题目需利用y随x的变化规律,确定自变量与函数的对应关系,然后结合题意,利用方程组解决问题.

18.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为 x=﹣1 .

考点:

一次函数与一元一次方程.

专题:

压轴题.

分析:

先根据一次函数y=kx+b过(2,3),(0,1)点,求出一次函数的解析式,再求出一次函数y=x+1的图象与x轴的交点坐标,即可求出答案.

解答:

解∵一次函数y=kx+b过(2,3),(0,1)点,

解得:

一次函数的解析式为:

y=x+1,

∵一次函数y=x+1的图象与x轴交于(﹣1,0)点,

∴关于x的方程kx+b=0的解为x=﹣1.

故答案为:

x=﹣1.

点评:

本题考查了一次函数与一元一次方程,关键是根据函数的图象求出一次函数的图象与x轴的交点坐标,再利用交点坐标与方程的关系求方程的解.

21、某服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装

80套。

已知做一套M型号的时装需要A种布料0.6m,B种布料0.9m,可获利45元,做一套N型号

的时装需要A种布料1.1m,B种布料0.4m,可获利50元。

若设生产N型号的时装套数为x,用这

批布料生产这两种型号的时装所获的总利润为y元。

(1)求y与x的函数关系式,并求出自变量x的取值范围;

(2)该服装厂在生产这批时装中,当生产N型号的时装多少套时,所获利润最大?

最大利润是多少?

三、典型例题讲析

例1 选择题

(1)下面图像中,不可能是关于x的一次函数

的图象的是(  )

(2)已知:

,那么

的图像一定不经过(  )

A.第一象限 B.第二象限 C.第三象限 D.第四象限

例5如图,A、B分别是

轴上位于原点左、右两侧的点,点P(2,p)在第一象限,直线PA交

轴于点C(0,2),直线PB交

轴于点D,

.

(1)

的面积是多少?

(2)求点A的坐标及p的值.

(3)若

,求直线BD的函数解析式.

  

解:

过点

轴于点

轴于点

.

(1)由点

、点C的坐标分别为(2,p)、(0,2)及点P在第一象限内,得

=2,

=2.

(2)注意到

=4.

∴点A的坐标为(-4,0).

=3.

(3)由题设,可知

.

.

.

∴点D的坐标为(0,6).

∵直线BD(设其解析式为

)过点P(2,3)、点D(0,6),

.

∴直线BD的解析式为

.

例6我省某水果种植场今年喜获丰收,据估计,可收获荔枝和芒果共200吨.按合同,每吨荔枝售价为人民币0.3万元,每吨芒果售价为人民币0.5万元.现设销售这两种水果的总收入为人民币y万元,荔枝的产量为x吨(0<x<200).

   

(1)请写出y关于x的函数关系式;

   

(2)若估计芒果产量不小于荔枝和芒果总产量的20%,但不大于60%,请求出y值的范围.

 解:

(1)因为荔枝为x吨,所以芒果为

吨.依题意,得

即所求函数关系式为:

.

(2)芒果产量最小值为:

(吨)

此时,

(吨);

最大值为:

(吨).

此时,

(吨).

由函数关系式

知,y随x的增大而减少,所以,y的最大值为:

(万元)

最小值为:

(万元).

值的范围为68万元

84万元.

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 社交礼仪

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1