英语原文.docx

上传人:b****6 文档编号:7983712 上传时间:2023-01-27 格式:DOCX 页数:11 大小:305.40KB
下载 相关 举报
英语原文.docx_第1页
第1页 / 共11页
英语原文.docx_第2页
第2页 / 共11页
英语原文.docx_第3页
第3页 / 共11页
英语原文.docx_第4页
第4页 / 共11页
英语原文.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

英语原文.docx

《英语原文.docx》由会员分享,可在线阅读,更多相关《英语原文.docx(11页珍藏版)》请在冰豆网上搜索。

英语原文.docx

英语原文

FuzzyLogicBasedAutonomousSkidSteeringVehicleNavigation

L.Doitsidis,K.P.Valavanis,N.C.Tsourveloudis

TechnicalUniversityofCrete

DepartmentofProductionEngineeringandManagement

Chania,Crete,GreeceGR-73100

{Idoitsidis,kimonv,nikost}@dpem.tuc.gr

Abstract-Atwo-layerfuzzylogiccontrollerhasbeendesignedfor2-DautonomousNavigationofaskidsteeringvehicleinanobstaclefilledenvironment.ThefirstlayeroftheFuzzycontrollerprovidesamodelformultiplesonarsensorinputfusionanditiscomposedoffourindividualcontrollers,eachcalculatingacollisionpossibilityinfront,back,leftandrightdirectionsofmovement.Thesecondlayerconsistsofthemaincontrollerthatperformsreal-timecollisionavoidancewhilecalculatingtheupdatedcoursetobeapplicabilityandimplementationisdemonstratedthroughexperimentalresultsandcasestudiesperformedoarealmobilerobot.

Keywords-Skidsteering,mobilerobots,fuzzynavigation.

Ⅰ.INTRODUCTION

Theexistseveralproposedsolutionstotheproblemofautonomousmobilerobotnavigationin2-Duncertainenvironmentsthatarebasedonfuzzylogic[1],[2],evolutionaryalgorithms[3],aswellasmethodscombiningfuzzylogicwithgeneticalgorithms[4]andfuzzylogicwithelectrostaticpotentialfields[5].

Thepaperistheoutgrowthofrecentlypublishedresults[9],[10],butitstudies2-Denvironmentsnavigationandcollisionavoidanceofaskidsteeringvehicle.Skidsteeringvehiclesarecompact,light,requirefewpartstoassembleandexhibitagilityfrompointturningtolinedrivingusingonlythemotions,components,andsweptvolumeneededforstraightlinedriving.

Skidsteeringvehiclemotiondiffersfromexplicitsteeringvehiclemotioninthewaytheskidsteeringvehicleturns.Thewheelsrotationislimitedaroundoneaxisandthebackofsteeringwheelresultsinnavigationdeterminedbythespeedchangeineithersideoftheskidsteeringvehicle.Samespeedineithersideresultsinastraight-linemotion.Explicitsteeringvehiclesturndifferentlysincethewheelsaremovingaroundtwoaxes.ThegeometricconfigurationofaskidsteeringvehicleintheX-YplaneisshowninFig1,whileatistheheadingangle,Wistherobotwidth,θthesenseofrotationandS1,S2arethespeedsintheeithersideoftherobot.

Thederivedandimplementedplanneratwo-layerfuzzylogicbasedcontrollerthatprovidespurely”reactivebehavior”ofthevehiclemovingina2-Dobstaclefilledenvironment,withinputsreadingsfromaringof24sonarsensorsandangleerrors,andoutputstheupdatedrotationalandtranslationalvelocitiesofthevehicle.

Ⅱ.DESIGNOFTHEFUZZYLOGICCONTROLSYSTEM

Theordertothevehiclemovement,atwo-layerMadman-typecontrollerhasbeendesignedandimplemented.Inthefirstlayer,therearefourfuzzylogiccontrollersrepondibleforobstacledetectionandcalculationofthecollisionpossibleilitiesinthefourmaindirections,front,back,leftandright.Thepossibilitiescalculatedinthefirstlayeraretheinputtothesecondlayeralongwiththeangleerror(thedifferencebetweentherobotheadingangleandthedesiredtargetangle),andtheoutputistheupdatedvehicle’stranslationalandtherotationalspeed.

Fig.1.GeometricconfigurationoftherobotintheX-Yplane.

A.firstlayerofthefuzzylogiccontroller

TheATRV-miniisequippedwithanarrayof24ultrasonicsensorsthatarevehiclesasshowninFig.2.TheultrasonicsensorsthatareusedaremanufacturedbyPolaroid.

Afterexperimentwith,andtestingseveralmethodsconcerningsonarsensordategroupingandmanagement,itwasfirstdecidedtofollowthesensorgroupinginpairsasproposedin[8](consideringtheATRV–minitwelvesonargroupAis=1,…..,12,havebeenenumeratedasshowninFig.2)andthendividethesunoftheprovidedpairsensordatabytwotodeterminethedistancefromthe(potential)obstacle.However,thismethodgaveunsatisfactoryresultsduetotheATRV–minisspecificsensorunreliability.Evenincaseswithobstaclespresentinthevicinityofthevehicle,thesensorsweredetectinga“freepath”.Toovercomethisproblem,amodified,simpler,sensorgroupinganddatamanagementmethodwastestedthatreturnmuchbetterandaccurateresults:

ThesensorswereagaingroupedinpairsaccordingtoFig.2,buttheminimumofthe(potential)obstacle.EachATRV–minisonarreturnsfromobstaclesatamaximumdistanceof4metres(experimentallyverifiedasopposedtodifferentvalueprovidedbythesonarsensorsmanufacturer

 

Fig.2.GroupingoftheSensors.

Theformofeachfirstlayerindividualfuzzycontroller,includingtheobstacledetectionmodule,isshowninFig.3.ObservingFig.3,datafromgroupsensorsA1,A2,….,A5(5inputs)andgroupsensorsA7,A8,…,A11(5inputs)serveasinputstotheindividualcontrollersresponsibleforthecalculationofthefrontandbackcollisionpossibilities,respectively.DatafromgroupsensorsA5,A6,A7(3inputs)serveasinputtocalculatetheleftandrightpossibilities,respectively.Theindividualfuzzycontrollersutilizethesamemembershipfunctionstocalculatethecollisionpossibilities.Thelinguisticvaluesofthevariabledistance_from_obstancearedefinedtobethree,near,meium_distance,awaywithmembershipfunctionsasshowninFig.4reflectingthemaximumdistanceof4metersasonarreturnsaccurateinformationaboutpotentialobstacles.

Fig.3.Obstacledetectionmodule.

Fig.4.InputVariableDistance_From_Obstacle.

Thefirstlayeroutputisacollisionpossibilityineachdirectiontakingvaluesfrom0to1.Thelinguisticvariablesdescribingeachdirectionoutputvariablecollisionpossibility(withempirically

Derivedforbestperformance)membershipfunctionsasshownInFig.5.ApartoftherulesbaseforleftcollisionispresentedinTableⅠ.

Anexampleoftherulesusedtoextractfrontcollisionpossibilitiesis:

IFA1isnearANDA2isnearANDA3isNearANDA4ismedium_distanceANDA5isnearTHENcollision_possibilityishigh.Similarforthebackcollisionpossibility.Forleft(equivalentlyforrightcollision)possibilitiestheruleisoftheform:

IfA5isnearAndA6isnearAndA7isnearTHENcollision_possibilityishigh.

Fig.5.OutputVariablecollision_possibility

 

TABLEⅠ

PARTOFTHERULESBASEFORLEFTCOLLISION

InputVariables

Output

Variables

A5

A6

A7

Near

Near

Near

High_Possibility

Away

Away

Away

Not_possible

Near

Away

Medium_Distance

Possible

Near

Away

Near

High_Possibility

B.Secondlayerofthefuzzylogiccontroller

Thesecondlayerfuzzycontrollerrecivesasinputsthefourcollisionpossibilitiesinthefourdirectionsandtheangleerror,andoutputsthetranslationalvelocity,whichisresponsibleformovingthevehiclebackwardorforwardandtherotationalspeed,whichisresponsibleforthevehiclerotationasshowninFig.6.

Theangleerrorrepresentsthedifferencebetweentherobot-headingangleandthedesiredangletherobotshouldhaveinordertoreachitstarget.Theangleerrortakesvaluesrangingfrom-1800to1800.Thelinguisticvariablesthatrepresenttheangleerrorare:

Backwards_1,Hard_Left,Left,right,Hard_right,Backwards_2with(empiricallyderivedfromtests)membershipfunctionsasshowninFig.7.

Thetranslationalvelocity(m/sec),whichisoneoftheoutputsofthesecondlayercontroller,isdescribedwiththefollowinglinguisticvariables:

back_full,back,back_solw,stop,front_slow,front,frontfull,withmembershipfunctionsasinFig.8.

Fig6.Blockdiagramofthe2ndlayerofthefuzzylogiccontroller

Fig7.InputVariableAngleError.

Fig8.OutputVariableTranslational_Velocity.

Therotational_speed(rad/sc)isdescribedwiththefollowinglinguisticvariables:

Right_full,right,no_ratation,left,let_fullwithmembershipfunctionsasinFig.9.

Anexampleoftherulesthatcontrolthevehicleisdemonstrated:

Iffront_collisionisNot_PossibleANDBack_CollisionisNot_possibleAndLeft_CollisionisNot_possibleAndRight_CollisionisNot_possibleAndAngleErrorisAheadTHENTranslational_velocityisFront_FullANDRotational_VelocityisNo_Ratation.

Fig.9.OutputVariableRotational_velocity.

Ⅲ.RUSULTS

ThefuzzylogiccontrollerhasbeendesignedandimplementedusingC++inanATRV-minimanufacturedbyRealWorldInterface(RWI).Inallexperimentstherobotisconsideredtohavereacheditstargetwhenstoppinginsideacirclewithradiusof30cm.Thisassumptionhasbeendictatedbecauseallcalculationshavebeenmaderelativetothecenteroftherobot.Soiftherobotstopsinsidethatcircleitisassumedthatithasreacheditstarget.

Severalscenariosinanindoor2-Dobstaclefilledenvironmenthavebeentestedtostudytherobotbehaviorandthecontroller’sapplicability.

ThearrowinFig.10,Fig.15,Fig.20isshowingtheinitialdirectionofthevehicle.

Intestcase1weexaminethebehaviorofthevehicleinanenvironmentwiththreeobstacles.Thetestcase1ispresentedinFig.10.Fig.11showsthetranslationalvelocity,whiletherotationalvelocityisgiveninFig.12.Fig.13presentsthefrontcollisionpossibility.InFig.14,thesolidlineindicatestheleftcollisionpossibilitywhilethedotedtherightcollisionpossibility.Thebehaviorofthevehicleisdefinedfromthesurroundingobstacles.

Inthebeginningtheleftcollisionpossibilityishighduetotheobstacleintheleft.Therobotmovesforwardsandit’ssteeringrightinordertoavoidtheobstacle.Thenitsteersleftandmovestowardsitstarget.

InthesecondtestcasepresentedinFig.15,amorecomplicatedenvironmentwiththreeobstacleshasbeentested.Fig.16showsthetranslationalvelocity,whiletherotationalvelocityisgiveninFi

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1