34 实际问题与一元一次方程 同步精讲讲练含答案.docx

上传人:b****5 文档编号:7922753 上传时间:2023-01-27 格式:DOCX 页数:9 大小:54.29KB
下载 相关 举报
34 实际问题与一元一次方程 同步精讲讲练含答案.docx_第1页
第1页 / 共9页
34 实际问题与一元一次方程 同步精讲讲练含答案.docx_第2页
第2页 / 共9页
34 实际问题与一元一次方程 同步精讲讲练含答案.docx_第3页
第3页 / 共9页
34 实际问题与一元一次方程 同步精讲讲练含答案.docx_第4页
第4页 / 共9页
34 实际问题与一元一次方程 同步精讲讲练含答案.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

34 实际问题与一元一次方程 同步精讲讲练含答案.docx

《34 实际问题与一元一次方程 同步精讲讲练含答案.docx》由会员分享,可在线阅读,更多相关《34 实际问题与一元一次方程 同步精讲讲练含答案.docx(9页珍藏版)》请在冰豆网上搜索。

34 实际问题与一元一次方程 同步精讲讲练含答案.docx

34实际问题与一元一次方程同步精讲讲练含答案

七年级数学(人教版上)同步练习第三章

第四节实际问题与一元一次方程

一.教学内容:

      实际问题与一元一次方程

1.体会数学建模思想.

2.进一步探究如何用一元一次方程解决实际问题.

二.知识要点:

1.数学建模

这里所讲的数学建模是利用数学方法(一元一次方程)解决实际问题的一种实践.即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式(一元一次方程)表达,建立起数学模型,然后运用数学方法进行求解.建立数学模型的这个过程就称为数学建模.

2.用一元一次方程解决实际问题的几个注意事项

(1)先弄清题意,找出相等关系,再按照相等关系来选择未知数和列代数式,比先设未知数,再找出含有未知数的代数式,再找相等关系更为合理.

(2)所列方程两边的代数式的意义必须一致,单位要统一,数量关系一定要相等.

(3)要养成“验”的好习惯,即所求结果要使实际问题有意义.

(4)不要漏写“答”、“设”和“答”都不要丢掉单位名称.

(5)分析过程可以只写在草稿纸上,但一定要认真.

三.重点难点:

1.重点:

进一步体现一元一次方程与实际的密切联系,渗透数学建模思想,培养运用一元一次方程分析和解决实际问题的能力.

2.难点:

本讲问题的背景和表达都比较贴近实际,其中有些数量关系比较隐蔽,所以在探究过程中正确地列方程是主要难点.突破难点的关键是弄清问题背景,分析清楚有关数量关系,特别是找出可以作为列方程依据的主要相等关系.

【典型例题】

例1.墙上钉着一根彩绳围成的梯形形状的饰物,如图中实线所示.小明将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图中虚线所示.小明所钉长方形的长、宽各为多少厘米?

      分析:

饰物形状变化前后有两个不变的量,一个是周长,另一个是变化前梯形的上底和变化后长方形的宽.根据题意可设长方形的长为x,则长方形的周长为2x+2×10,梯形的周长为10+10+10+6+10+6=52.则2x+20=52,从而解得x=16.

      解:

设小明所钉长方形的长为x,根据题意得:

2x+2×10=10+10+6+10+6+10

整理得,2x+20=52

解得,x=16

由于饰物变化前后长度为10的边没有变化,所以长方形的一边长为10厘米.

答:

长方形的长为16厘米,宽为10厘米.

      评析:

图形变化问题的等量关系往往是变化前后的周长相等、面积相等、体积相等.

例2.一批货物,甲把原价降低10元卖出,用售价的10%做积累,乙把原价降低20元,用售价的20%做积累,若两种积累一样多,则这批货物的原售价是多少?

      分析:

设这批货物的原售价为x元,则甲的积累是(x-10)×10%元,乙的积累是(x-20)×20%,相等关系是:

甲的积累=乙的积累.

      解:

设这批货物的原售价为x元,根据题意得:

(x-10)×10%=(x-20)×20%

化简得:

x-10=2(x-20)

即x-10=2x-40

解得x=30

答:

这批货物的原售价为30元.

      评析:

这个问题的相等关系比较简单,难点是对两个百分数的处理.

例3.某足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分.一个队踢14场球负5场共得19分,问这个队胜了几场?

      分析:

根据题意,所得的19分是踢胜的场数和踢平的场数所得的积分,而踢胜的场数和踢平的场数共14-5=9场,如果设胜了x场,那么踢平的场数就是9-x场.分别乘它们的分值,和为19.

      解:

设胜了x场,根据题意得:

3x+1×(14-x-5)=19

即3x+9-x=19

解得x=5

答:

这个队胜了5场.

      评析:

积分多少与胜、平、负的场数相关,同时也与比赛积分规定有关,如果对体育比赛有一定了解,会有助于理解题意.

 

例4.某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率.

      分析:

数量关系如下表:

 

上个月

这个月

石油进口量

1

1-5%

进口石油费用

1

1+14%

石油价格

1

1+x

      解:

设这个月的石油价格相对上个月的增长率为x.根据题意得:

(1+x)(1-5%)=1+14%

解得x=1/2=20%

答:

这个月的石油价格相对上个月的增长率为20%.

      评析:

借助表格来分析较复杂的数量关系.这道题所用的相等关系是:

数量×价格=费用.

 

例5.2001年以来,我市药店积极实施药品降价,累计降价的总金额为269亿元.五次药品降价的年份与相应降价金额如下表所示,表中缺失了2003年,2007年的相关数据.已知2007年药品降价金额是2003年药品降价金额的6倍,结合表中信息,求2003年和2007年的药品降价金额.

年份

2001

2003

2004

2005

2007

降价金额(亿元)

54

 

35

40

 

      分析:

相等关系较为明显,可以根据累计降价的总金额为269亿元列方程,结合表格如果设2003年降价金额为x亿元,则2007年降价金额为6x亿元,有54+x+35+40+6x=269.

      解:

设2003年降价金额为x亿元,根据题意得:

54+x+35+40+6x=269

整理得,7x=140

解得,x=20

6x=6×20=120

答:

2003年和2007年药品降价金额分别是20亿元和120亿元

      评析:

这个问题是以表格形式传递信息的,这种形式在现实中很普遍,重点培养从不同形式获取有关数据信息,是值得注意的问题.

 

例6.初一

(1)班有学生60人,其中参加数学小组的有36人,参加英语小组的人数比参加数学小组的人数少5人,并且这两个小组都不参加的人数比两个小组都参加的人数的1/4多2人,则同时参加这两个小组的人数是   (  )

      A.16                          B.12                 C.10                          D.8

      解:

B

      评析:

这道题的数量关系非常复杂,但是结合图形可以使其变得很明朗.

 

【方法总结】

应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型.从这一意义上讲,可以说数学建模是一切科学研究的基础.没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一.数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题、解决问题的能力的必备手段之一.

 

【模拟试题】(答题时间:

60分钟)

一.选择题

1.实验中学七年级

(2)班有学生56人,已知男生人数比女生人数的2倍少11人,求男生和女生各多少人?

下面设未知数的方法,合适的是          (  )

 A.设总人数为x人            B.设男生比女生多x人

C.设男生人数是女生人数的x倍      D.设女生人数为x人

2.甲厂的年产值为7450万元,比乙厂的年产值的5倍还多420万元,若设乙厂的年产值为x万元,下列所列方程中错误的是        (  )

 A.5x+420=7450             B.7450-5x=420

C.7450-(5x+420)=0          D.5x-420=7450

3.某种品牌的彩电降价30%后,每台售价为a元,则该品牌彩电每台原价应为  (  )

   A.0.7a元                 B.0.3a元  C.元                   D.元

4.A、B两城相距720km,普快列车从A城出发120km后,特快列车从B城开往A城,6h后两车相遇.若普快列车是特快列车速度的,且设普快列车速度为xkm/h,则下列所列方程错误的是     (  )

5.用两根长12cm的铁丝分别围成正方形和长与宽之比为2∶1的长方形,则长方形和正方形的面积依次为  (  )

   A.9cm2和8cm2      B.8cm2和9cm2  C.32cm2和36cm2      D.36cm2和32cm2

*6.有一位旅客携带了30kg重的行李从上海乘飞机去北京,按民航总局规定:

旅客最多可免费携带20kg重的行李,超重部分每千克按飞机票价格1.5%购买行李票,现该旅客购买了180元的行李票,则他的飞机票价格应是     (  )

A.800元      B.1000元      C.1200元      D.1500元

二.填空题

1.一件运动衣按原价的八折出售时,售价是40元,则原价为_____元.

2.买4本练习本与3枝铅笔一共用了4.7元.已知铅笔每枝0.5元,则练习本每本_____元.

*3.一个长方形鸡场的一边靠墙,墙的对面有一个2m宽的门,另三边(门除外)用篱笆围成,篱笆总长33m,若鸡场的长∶宽=3∶2(尽量用墙),则鸡场的长为__________m,宽为__________m.

4.某市居民2007年末的储蓄存款达到9079万元,比2006年末的储蓄存款的15倍还多4万元,则2006年末的存款为__________.

5.某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件x元,则x满足的方程是__________.

**6.依法纳税是每个公民应尽的义务,新的《中华人民共和国个人所得税法》规定,从2008年3月1日起,公民全月工薪不超过2000元的部分不必纳税,超过2000元的部分应缴纳个人所得税,此项税款按下表分段累进计算.黄先生4月份缴纳个人所得税税金55元,那么黄先生该月的工薪是__________元.

全月应纳税所得税额

税率

不超过500元的部分

5%

超过500元至2000元的部分

10%

三.列方程解应用题

1.据某统计数据显示,在我国的664座城市中,按水资源情况可分为三类:

暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?

*2.甲、乙两个工人接受了加工一批服装的任务,规定两人各加工这批服装的一半,已知乙的工作效率相当于甲的,工作了8小时,甲完成了自己的任务,这时乙还差24件服装没有完成.这批服装共有多少件?

3.如图所示,小红将一个正方形剪去一个宽为4cm的长条后,再从剩下的长方形纸片上沿平行短边的方向剪去一个宽为5cm的长条.若两次剪下的长条面积正好相等,那么每一长条的面积为多少?

原正方形的面积为多少?

**4.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段以达到节约用水的目的.该市规定了如下的用水标准:

每户每月的用水不超过6m3时,水费按每立方米a元收费;超过6m3时,不超过部分每立方米仍按a元收费,超过部分每立方米按b元收费.

该市居民张大爷一家今年3、4月份的用水量和水费如下表:

月份

用水量/m3

水费/元

3

5

7.5

4

9

27

      设该户每月用水量为x(m3),应缴水费y(元).

(1)求a、b的值,写出用水不超过6m3和超过6m3时,y与x之间的代数表达式;

(2)若张大爷一家今年5月份的用水量为8m3,该户5月份应缴的水费是多少?

**5.振华中学为进一步推进素质教育,把素质教育落到实处,利用课外兴趣小组活动开展棋类教学活动,以提高学生的思维能力,开发智力,七年级一班有50名同学,通过活动发现只有1人象棋、围棋都不会下,有30人象棋、围棋都会下,且会下象棋的学生比会下围棋的学生多7人.

(1)若设会下围棋的有x个人,你能列出方程并证明x是35、36、37三个数中的哪一个吗?

(2)你知道只会下象棋不会下围棋的人数吗?

 

参考答案

一.选择题

1.D   2.D       3.D       4.B       5.B       6.C

二.填空题

1.50 

2.0.8 

3.15 10(提示:

可设长为3x,宽为2x,则3x+2x+2x-2=33)

4.605万元    

5.x+20=0.8×150

6.2800提示:

设黄先生4月份的工薪是x元,如果x在2000元~2500元,则5%(x-2000)=55,解得x=3100,不符合题意;如果x在2500元~4000元,则10%(x-2000-500)+5%×500=55,解得x=2800.所以黄先生4月份的工薪是2800元.

三.列方程解应用题

1.解:

设严重缺水城市有x座,根据题意得:

4x-50+2x+x=664

解得,x=102

答:

严重缺水城市有102座.

3.解:

设原正方形的边长为xcm,列方程为:

4x=5(x-4)

解得,x=20

4×20=80(cm2),20×20=400(cm2)

答:

每一长条的面积为80cm2,原正方形的面积为400cm2.

4.解:

(1)3月份用水5m3不超过6m3,所以水费按每立方米a元收取,所以5a=7.5,所以a=1.5;

4月份用水9m3,所以7.5+(9-6)·b=27,解得:

b=6.5.

不超过6m3时,y=1.5x;

超过6m3时,y=7.5+6.5(x-6)

(2)由

(1)可得当x=8时,y=7.5+6.5(x-6)

即y=7.5+6.5×2=20.5(元)

答:

5.

(1)设会下围棋的学生有x人,则会下象棋的学生为(x+7)人,那么只会下围棋的学生有(x-30)人,只会下象棋的学生为(x+7-30)人,根据题意得:

x+x+7-30=50-1,

把x=35,x=36,x=37分别代入方程,有x=36成立,

所以会下围棋的有36人.

(2)会下象棋不会下围棋的有x+7-30=36+7-30=13(人).

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 商务科技

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1