数学专业英语4.docx

上传人:b****6 文档编号:7702334 上传时间:2023-01-25 格式:DOCX 页数:11 大小:58.05KB
下载 相关 举报
数学专业英语4.docx_第1页
第1页 / 共11页
数学专业英语4.docx_第2页
第2页 / 共11页
数学专业英语4.docx_第3页
第3页 / 共11页
数学专业英语4.docx_第4页
第4页 / 共11页
数学专业英语4.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

数学专业英语4.docx

《数学专业英语4.docx》由会员分享,可在线阅读,更多相关《数学专业英语4.docx(11页珍藏版)》请在冰豆网上搜索。

数学专业英语4.docx

数学专业英语4

 

MathematicalEnglish

Dr.XiaominZhang

Email:

zhangxiaomin@

§2.4Integers,RationalNumbersandRealnumbers

TEXTAIntegersandrationalnumbers

ThereexistcertainsubsetsofRwhicharedistinguishedbecausetheyhavespecialpropertiesnotsharedbyallrealnumbers.Inthissectionweshalldiscusstwosuchsubsets,theintegersandtherationalnumbers.

Tointroducethepositiveintegerswebeginwiththenumber1,whoseexistenceisguaranteedbyAxiom4.Thenumber1+1isdenotedby2,thenumber2+1by3,andsoon.Thenumbers1,2,3,…,obtainedinthiswaybyrepeatedadditionof1areallpositive,andtheyarecalledthepositiveintegers.Strictlyspeaking,thisdescriptionofthepositiveintegersisnotentirelycompletebecausewehavenotexplainedindetailswhatwemeanbytheexpressions“andsoon”,or“repeatedadditionof1”.Althoughtheintuitivemeaningofexpressionsmayseemclear,inacarefultreatmentofthereal-numbersystemitisnecessarytogiveamoreprecisedefinitionofthepositiveintegers.Therearemanywaystodothis.Oneconvenientmethodistointroducefirstthenotionofaninductiveset.

DEFINITIONOFANINDUCTIVESETAsetofrealnumbersiscalledaninductivesetifithasthefollowingtwoproperties:

(a)Thenumber1isintheset.

(b)Foreveryxintheset,thenumberx+1isalsointheset.

Forexample,Risaninductiveset.SoisthesetR+.Nowweshalldefinethepositiveintegerstobethoserealnumberswhichbelongtoeveryinductiveset.

DEFINITIONOFPOSITIVEINTEGERSArealnumberiscalledapositiveintegerifitbelongstoeveryinductiveset.

LetPdenotethesetofallpositiveintegers.ThenPisitselfaninductivesetbecause(a)itcontains1,and(b)itcontainsx+1wheneveritcontainsx.SincethemembersofPbelongtoeveryinductiveset,werefertoPasthesmallestinductiveset.ThispropertyofthesetPformsthelogicalbasisforatypeofreasoningthatmathematicianscallproofbyinduction,adetaileddiscussionofwhichisgiveninPart4ofthisIntroduction.

Thenegativesofthepositiveintegersarecalledthenegativeintegers.Thepositiveintegers,togetherwiththenegativeintegersand0(zero),formasetZwhichwecallsimplythesetofintegers.

Inathoroughtreatmentofthereal-numbersystem,itwouldbenecessaryatthisstagetoprovecertaintheoremsaboutintegers.Forexample,thesum,difference,orproductoftwointegersisaninteger,butthequotientoftwointegersneednotbeaninteger.However,weshallnotenterintothedetailsofsuchproofs.

Quotientsofintegersa/b(whereb0)arecalledrationalnumber.Thesetofrationalnumbers,denotedbyQ,containsZasasubset.ThereadershouldrealizethatallthefieldaxiomsandtheorderaxiomsaresatisfiedbyQ.Forthisreason,wesaythatthesetofrationalnumbersisanorderedfield.RealnumbersthatarenotinQarecalledirrational.

Notations

FieldaxiomsAfieldisanysetofelementsthatsatisfiesthefieldaxiomsforbothadditionandmultiplicationandisacommutativedivisionalgebra,wheredivisionalgebra,alsocalleda"divisionring"or"skewfield,"meansaringinwhicheverynonzeroelementhasamultiplicativeinverse,butmultiplicationisnotnecessarilycommutative.

OrderaxiomsAtotalorder(or"totallyorderedset,"or"linearlyorderedset")isasetplusarelationontheset(calledatotalorder)thatsatisfiestheconditionsforapartialorderplusanadditionalconditionknownasthecomparabilitycondition.ArelationisatotalorderonasetS("totallyordersS")ifthefollowingpropertieshold.

1.Reflexivity:

aaforallaS.

2.Antisymmetry:

abandbaimpliesa=b.

3.Transitivity:

abandbcimpliesac.

4.Comparability(trichotomylaw):

Foranya,bS,eitheraborba.

Thefirstthreearetheaxiomsofapartialorder,whileadditionofthetrichotomylawdefinesatotalorder.

TEXTBGeometricinterpretationofrealnumbersaspointsonaline

Thereaderisundoubtedlyfamiliarwiththegeometricrepresentationofrealnumbersbymeansofpointsonastraightline.Apointisselectedtorepresent0andanother,totherightof0,torepresent1,asillustratedinFigure2-4-1.Thischoicedeterminesthescale.IfoneadoptsanappropriatesetofaxiomsforEuclideangeometry,theneachrealnumbercorrespondstoexactlyonepointonthislineand,conversely,eachpointonthelinecorrespondstooneandonlyonerealnumber.Forthisreasonthelineisoftencalledthereallineortherealaxis,anditiscustomarytousethewordsrealnumberandpointinterchangeably.Thusweoftenspeakofthepointxratherthanthepointcorrespondingtotherealnumbers.

Theorderingrelationamongtherealnumbershasasimplegeometricinterpretation.Ifx

Thisdeviceforrepresentingrealnumbersgeometricallyisaveryworthwhileaidthathelpsustodiscoverandunderstandbettercertainpropertiesofrealnumbers.However,thereadershouldrealizethatallpropertiesofrealnumbersthataretobeacceptedastheoremsmustbededuciblefromtheaxiomswithoutanyreferencetogeometry.Thisdoesnotmeanthatoneshouldnotmakeuseofgeometryinstudyingpropertiesofrealnumbers.Onthecontrary,thegeometryoftensuggeststhemethodofproofofaparticulartheorem,andsometimesageometricargumentismoreilluminatingthanapurelyanalyticproof(onedependingentirelyontheaxiomsfortherealnumbers).Inthisbook,geometricargumentsareusedtoalargeextenttohelpmotivateorclarifyaparticulardiscuss.Nevertheless,theproofsofalltheimportanttheoremsarepresentedisanalyticform.

SUPPLEMENTPrimeNumber

Aprimenumber(orprimeinteger,oftensimplycalleda"prime"forshort)isapositiveintegerp>1thathasnopositiveintegerdivisorsotherthan1andpitself.Forexample,theonlydivisorsof13are1and13,making13aprimenumber,whilethenumber24hasdivisors1,2,3,4,6,8,12,and24(correspondingtothefactorization24=233),making24notaprimenumber.Positiveintegersotherthan1whicharenotprimesarecalledcompositenumbers.

Primenumbersarethereforenumbersthatcannotbefactoredor,moreprecisely,arenumbersnwhosedivisorsaretrivialandgivenbyexactly1andn.

Thenumber1isaspecialcasewhichisconsideredneitherprimenorcomposite.With1excluded,thesmallestprimeistherefore2andsince2istheonlyevenprime,itisalsosomewhatspecial.Notealsothatwhile2isconsideredaprimetoday,atonetimeitwasnot.

Thenthprimenumberiscommonlydenotedpn,sop1=2,p2=3,andsoon,andmaybecomputedinMathematicaasPrime[n].ThesetofprimesissometimesdenotedP,representedinMathematicaasPrimes.

Eulercommented"Mathematicianshavetriedinvaintothisdaytodiscoversomeorderinthesequenceofprimenumbers,andwehavereasontobelievethatitisamysteryintowhichthemindwillneverpenetrate".Ina1975lecture,D.Zagiercommented"TherearetwofactsaboutthedistributionofprimenumbersofwhichIhopetoconvinceyousooverwhelminglythattheywillbepermanentlyengravedinyourhearts.Thefirstisthat,despitetheirsimpledefinitionandroleasthebuildingblocksofthenaturalnumbers,theprimenumbersgrowlikeweedsamongthenaturalnumbers,seemingtoobeynootherlawthanthatofchance,andnobodycanpredictwherethenextonewillsprout.Thesecondfactisevenmoreastonishing,foritstatesjusttheopposite:

thattheprimenumbersexhibitstunningregularity,thattherearelawsgoverningtheirbehavior,andthattheyobeytheselawswithalmostmilitaryprecision".

LargeprimesincludethelargeMersenneprimes,Ferrier'sprime.ThelargestknownprimeasofFeb.2005istheMersenneprime225964951-1(Weisstein2005).

Primenumberscanbegeneratedbysievingprocesses(suchasthesieveofEratosthenes),andluckynumbers,whicharealsogeneratedbysieving,appeartosharesomeinterestingasymptoticpropertieswiththeprimes.Primenumberssatisfymanystrangeandwonderfulproperties.

Thefunctionthatgivesthenumberofprimeslessthanorequaltoanumbernisdenoted(n)andiscalledtheprimecountingfunction.Thetheoremgivinganasymptoticformfor(n)iscalledtheprimenumbertheorem.

Thefundamentaltheoremofarithmeticstatesthatanypositiveintegercanberepresentedinexactlyonewayasaproductofprimes.Euclid'ssecondtheoremdemonstratedthatthereareaninfinitenumberofprimes.However,itisnotknownifthereareaninfinitenumberofprimesoftheformn2+1,whetherthereareaninfinitenumberoftwinprimes(thetwinprimeconjecture),orifaprimecanalwaysbefoundbetweenn2and(n+1)2.ThelattertwoofthesearetwoofLandau'sproblems.

Primesconsistingofconsecutivedigits(counting0ascomingafter9)include2,3,5,7,23,67,89,4567,78901,....Primesconsistingofdigitsthatarethemselvesprimesinclude23,37,53,73,223,227,233,257,277,337,353,373,523,557,...,whichisoneoftheSmarandachesequences.

Becauseaprimenumberphasthetrivialfactors1andp,BillGatesaccidentallyreferredtoatrivialoperationwhenhestated"Becauseboththesystem'sprivacyandthesecurityofdigitalmoneydependonencryption,abreakthroughinmathematicsorcomputersciencethatdefeatsthecryptographicsystemcouldbeadisaster.Theobviousmathematicalbreakthroughwouldbethedevelopmentofaneasywaytofactorlargeprimenumbers[emph

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 职业教育 > 职高对口

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1