yqfx仪器分析考试内容.docx

上传人:b****6 文档编号:7579226 上传时间:2023-01-25 格式:DOCX 页数:16 大小:28.48KB
下载 相关 举报
yqfx仪器分析考试内容.docx_第1页
第1页 / 共16页
yqfx仪器分析考试内容.docx_第2页
第2页 / 共16页
yqfx仪器分析考试内容.docx_第3页
第3页 / 共16页
yqfx仪器分析考试内容.docx_第4页
第4页 / 共16页
yqfx仪器分析考试内容.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

yqfx仪器分析考试内容.docx

《yqfx仪器分析考试内容.docx》由会员分享,可在线阅读,更多相关《yqfx仪器分析考试内容.docx(16页珍藏版)》请在冰豆网上搜索。

yqfx仪器分析考试内容.docx

yqfx仪器分析考试内容

分子光谱法:

UV-VIS、IR、F 

原子光谱法:

AAS 

电化学分析法:

电位分析法、电位滴定 

色谱分析法:

GC、HPLC

 质谱分析法:

MS、NRS 

第1章 绪论

一.经典分析方法与仪器分析方法有何不同?

 

经典分析方法:

是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。

 仪器分析方法:

是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。

 

化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。

 

二.仪器的主要性能指标的定义

 1、精密度(重现性):

数次平行测定结果的相互一致性的程度,一般用相对标准偏差表示(RSD%),精密度表征测定过程中随机误差的大小。

 

2、灵敏度:

仪器在稳定条件下对被测量物微小变化的响应,也即仪器的输出量与输入量之比。

 3、检出限(检出下限):

在适当置信概率下仪器能检测出的被检测组分的最小量或最低浓度。

 

4、线性范围:

仪器的检测信号与被测物质浓度或质量成线性关系的范围。

 

5、选择性:

对单组分分析仪器而言,指仪器区分待测组分与非待测组分的能力。

 

三.简述三种定量分析方法的特点和应用要求 一、工作曲线法(标准曲线法、外标法) 

特点:

直观、准确、可部分扣除偶然误差。

需要标准对照和扣空白 

应用要求:

试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。

 

二、标准加入法(添加法、增量法) 

特点:

由于测定中非待测组分组成变化不大,可消除基体效应带来的影响 

应用要求:

适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况 

三、内标法 

特点:

可扣除样品处理过程中的误差 

应用要求:

内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰 

第2章  光谱分析法引论

1、吸收光谱和发射光谱的电子能动级跃迁的关系 

吸收光谱:

当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足ΔE=hv的关系时,将产生吸收光谱。

M+hv→M* 

发射光谱:

物质通过激发过程获得能量,变为激发态原子或分子M*,当从激发态过渡到低能态或某态时产生发射光谱。

M*→M+hv 

2、带光谱和线光谱 

带光谱:

是分子光谱法的表现形式。

分子光谱法是由分子中电子能级、振动和转动能级的变化产生。

 

线光谱:

是原子光谱法的表现形式。

原子光谱法是由原子外层或内层电子能级的变化产生的。

 

第3章 紫外-可见分光光度法(P21)

UV-Vis:

根据物质分子对200~800 nm 光谱区域内辐射能的吸收来研究物质的性质、结构和含量的方法。

 3.1 紫外-可见吸收光谱 

3.1.5 影响紫外-可见光谱的因素:

溶剂的影响 

极性:

水>甲醇>乙醇>丙酮>正丁醇>乙酸乙酯>乙醚>氯仿>二氯甲烷>苯>四氯化碳>己烷>石油醚 

3.2 光的吸收定律 

Lambert-Beer 定律:

A =k c l = -lgT = lgI0 / I     l—cm,c--mol/L, 

k 值称为摩尔吸光系数—ε(L·mol-1·cm-1) A =εlc 

3.4 分析条件的选择 

单光束分光光度计 特点:

只有一条光束 

单波长双光束分光光度计 特点:

在同一台仪器中使用两个完全相同的光束。

 

双波长分光光度计:

不需要参比溶液

 透光率读数的影响:

 

结 论:

1. ∆c/c与透光率读数T有函数关系;当T=36.8%时 (或A=0.434),∆c/c最小。

 

2. 当T读数在70%~10%,即A读数0.15~1.0 范围时, ∆c/c较小(<5%),并且变化不大。

 

习  题

1、分子光谱是如何产生的?

它与原子光谱的主要区别是什么?

 

分子光谱是由分子中电子能级、振动和转动能级的变化产生的,表现形式为带光谱 

它与原子光谱的主要区别在于表现形式为带光谱。

 (原子光谱是由原子外层或内层电子 能级的变化产生的,它的表现形式为线光谱。

) 

2、试说明有机化合物紫外光谱产生的原因。

机化合物紫外光谱的电子跃迁有哪几种类型?

吸收带有哪几种类型?

 

有机化合物分子的价电子在吸收辐射并跃迁到高能级后所产生的吸收光谱。

 

有机化合物紫外光谱电子跃迁常见的4种类型:

σ→σ*,n→σ* ,π→π*,n→π* 

2和有机化合物:

σ→σ* 跃迁,n→σ*跃迁

 ②不饱和脂肪族化合物:

π→π*,n→π*

 ③芳香族化合物:

E1和E2带,B带 

3、在分光光度法测定中,为什么尽可能选择最大吸收波长为测量波长?

 

因为选择最大吸收波长为测量波长,能保证测量有较高的灵敏度,且此处的曲线较为平坦,吸光系数变化不大,对beer定律的偏离较小。

 

4、在分光光度测量中,引起对Lambrt-Beer定律偏离的主要因素有哪些?

如何克服这些因素对测量的影响?

 偏离Lambert-Beer Law 的因素主要与样品和仪器有关。

 

(1)与测定样品溶液有关的因素 

浓度:

当l不变,c > 0.01M 时, Beer定律会发生偏离。

 溶剂:

当待测物与溶剂发生缔合、离解及溶剂化反应时,产生的生成物与待测物具有不同的吸收光谱,出现化学偏离。

 

光散射:

当试样是胶体或有悬浮物时,入射光通过溶液后,有一部分光因散射而损失,使吸光度增大,Beer定律产生正偏差。

 

(2)与仪器有关的因素 

单色光:

Beer定律只适用于单色光,非绝对的单色光,有可能造成Beer定律偏离。

 

谱带宽度:

当用一束吸光度随波长变化不大的复合光作为入射光进行测定时,吸光物质的吸光系数变化不大,对吸收定律所造成的偏离较小。

 对应克服方法:

 ①c ≤ 0.01M 

②避免使用会与待测物发生反应的溶剂 ③避免试样是胶体或有悬浮物 

④在保证一定光强的前提下,用尽可能窄的有效带宽宽度。

 

⑤选择吸光物质的最大吸收波长作为分析波长 

5、极性溶剂为什么会使π→π*跃迁的吸收峰长移,却使n→π*跃迁的吸收峰短移?

 

溶剂极性不同会引起某些化合物吸收光谱的红移或蓝移,称溶剂效应。

在π→π*跃迁中,激发态极性大于基态,当使用极性溶剂时,由于溶剂与溶质相互作用,激发态π*比基态π能量下降更多,因而使基态与激发态间能量差减小,导致吸收峰红移。

在n→π*跃迁中,基态n电子与极性溶剂形成氢键,降低了基态能量,使激发态与基态间能量差增大,导致吸收峰蓝移。

 

第4章  红外吸收光谱法( IR ) P53

 根据样品对不同波长红外光的吸收情况,来研究物质分子的组成、结构及含量的方法。

 IR 与 UV-Vis 的比较

 相同点:

都是分子吸收光谱。

 

不同点:

     

 UV-Vis 是基于价电子能级跃迁而产生的电子光谱;主要用于样品的定量测定。

     

IR 则是分子振动或转动能级跃迁而产生的吸收光谱;主要用于有机化合物的定性分析和结构鉴定。

 

基本概念 

红外光谱图:

是以波数为横坐标,纵坐标用透光率或吸光度来表示的一种频率图。

               

 波数(cm-1):

波长的倒数,表示每厘米长度上波的数目。

 红外吸收光谱定性分析的依据 

根据化合物红外谱图中特征吸收峰的位置、数目、相对强度、形状等参数来推断样品中存在哪些基团,从而确定其分子结构。

 ★4.2 基本原理

 吸收峰由何引起?

每个基团或化学键能产生几个吸收峰?

都出现在什么位置?

不同吸收峰为什么有强有弱?

 物质分子产生红外吸收的基本条件 

(1)分子吸收的辐射能与其能级跃迁所需能量相等; 

(2)分子发生偶极距的变化(耦合作用)。

 只有发生偶极矩变化的振动才能产生可观测的红外吸收光谱,称红外活性。

 

4.2.3多原子分子的振动(P56)

 分子振动自由度:

多原子分子的基本振动数目,也是基频吸收峰的数目。

 为什么实际测得吸收峰数目远小于理论计算的振动自由度?

 ①没有偶极矩变化的振动不产生红外吸收,即非红外活性; ②相同频率的振动吸收重叠,即简并; ③仪器分辨率不够高; ④有些吸收带落在仪器检测范围之外。

 4.2.5 分子振动频率(基团频率)

1.官能团具有特征频率

 基团频率:

不同分子中同一类型的基团振动频率非常相近,都在一较窄的频率区间出现吸收谱带,其频率称基团频率。

 

2. 基团频率区和指纹区—谱图解析 

谱图解析就是根据实验所得的红外光谱图吸收峰的位置、强度和形状;利用基团振动频率与分子结构的关系;确定吸收峰的归属,确认分子中所含的基团或化学键,进而推断分子的结构。

  

 红外谱图解析顺序:

先看官能团区,再看指纹区。

1.产生红外吸收光谱的条件 2.分子基本振动类型和振动自由度3. 影响吸收峰强度的因素 4. 基团频率及谱图解析 5. 影响基团频率的因素 

干涉仪:

是FT-IR光谱仪的核心部件,作用是将复色光变为干涉光。

 

4.4 试样的处理和制备 

4.4.1  红外光谱法对试样的要求 

(1)单一组分纯物质,纯度 > 98%; 

(2)样品中不含游离水; 

(3)要选择合适的浓度和测试厚度。

 

4.4.2 制样方法 

1.气体样品的制备 

2.液体和溶液样品的制备 

(1)液体池法 

(2)液膜法

 3. 固体样品制备 

(1)压片法:

最常用的固体样品制样方法,常用KBr作为固体分散介质。

 

(2)石蜡糊法:

减少试样光散射的影响,但重复性较差; 

(3)薄膜法:

无溶剂和分散介质的影响。

 4.5 红外光谱法的应用

 一、定性分析 

已知物的鉴定--谱图比对,未知物结构的确定,收集试样的有关数据和资料,确定未知物的不饱和度(P71) 不饱和度有如下规律:

 

链状饱和脂肪族化合物不饱和度为0; 

一个双键或一个环状结构的不饱和度为1;

 一个三键或两个双键及脂环的不饱和度为2;

 一个苯环的不饱和度为4。

 未知物结构的确定 

1.收集试样的有关数据和资料  

2.确定未知物的不饱和度(P71)

3.谱图解析 (P72 例)

 二、定量分析 

理论依据:

朗伯-比尔定律 

优点:

 

(1)有许多谱带可供选择,有利于排除干扰; 

(2)气、液、固均可测定。

 

课后练习题

1.分子产生红外吸收的条件是什么?

 

(1)分子吸收的辐射能与其能级跃迁所需能量相等; 

(2)分子发生偶极距的变化(耦合作用)。

 

2.何谓特征吸收峰?

影响吸收峰强度的主要因素是什么?

 

能代表基团存在、并有较高强度的吸收谱带称基团频率,其所在位置称特征吸收峰。

 

①与分子跃迁概率有关,②与分子偶极距有关(P59)

 3.红外谱图解析的三要素是什么?

 

红外谱图解析三要素:

位置、强度、峰形。

4.解释名词:

基团频率区  指纹区  相关峰 

基团频率区(官能团区):

在4000~1300cm-1 范围内的吸收峰,有一共同特点:

即每一吸收峰都和一定的官能团相对应,因此称为基团频率区。

在此区,原则上每个吸收峰都可以找到归属。

 

指纹区:

在1300~400cm-1范围内,虽然有些吸收也对应着某些官能团,但大量吸收峰仅显示了化合物的红外特征,犹如人的指纹,故称为指纹区。

指纹区的吸收峰数目虽多,但往往大部分都找不到归属。

 

相关峰:

同一种分子的基团或化学键振动,往往会在基团频率区和指纹区同时产生若干个吸收峰。

这些相互依存和可以相互佐证的吸收峰称为相关峰。

 

5.如何利用红外吸收光谱区别烷烃、烯烃、炔烃?

 

利用基团的红外特征吸收峰区别:

 

烷烃:

饱和碳的C-H吸收峰< 3000cm –1,约3000~2800 cm –1 

烯烃、炔烃:

不饱和碳的C-H吸收峰> 3000cm-1, 

C = C 双键:

1600~1670cm–1 

C≡C-叁键:

2100~2260 cm–1 

6.红外光谱法对试样有哪些要求?

 

(1)单一组分纯物质,纯度 > 98%; 

(2)样品中不含游离水;

(3)要选择合适的浓度和测试厚度。

 

7.简述振动光谱的特点以及它们在分析化学中的重要性。

 

优点:

特征性强,可靠性高、样品测定范围广、用量少、测定速度快、操作简便、重现性好。

 

局限性:

有些物质不能产生红外吸收;有些物质不能用红外鉴别; 

有些吸收峰,尤其是指纹峰不能全部指认;定量分析的灵敏度较低。

 

第6章 原子吸收光谱法(P130)

熟识:

 原子吸收光谱产生的机理以及影响原子吸收光谱轮廓的因素 

了解:

 原子吸收光谱仪的基本结构;空心阴极灯产生锐线光源的原理 

掌握:

 火焰原子化器的原子化历程以及影响因素、原子吸收光谱分析干扰及其消除方法、AAS测量条件的选择及定量分析方法(实验操作) 

1、定义:

它是基于物质所产生的原子蒸气对特定谱线的吸收来进行定量分析的方法。

基态原子吸收其共振辐射,外层电子由基态跃迁至激发态而产生原子吸收光谱。

 

原子吸收光谱位于光谱的紫外区和可见区。

 

2、原子吸收定量原理:

频率为ν的光通过原子蒸汽,其中一部分光被吸收,使透射光强度减弱。

3、谱线变宽的因素(P-131):

 

(1)普勒(Doppler)宽度ΔυD:

由原子在空间作无规热运动所致。

故又称热变宽。

 

Doppler宽度随温度升高和相对原子质量减小而变宽。

 

(2)压力变宽ΔυL(碰撞变宽):

由吸收原子与外界气体分子之间的相互作用引起 

外界压力愈大,浓度越高,谱线愈宽。

 

4、对原子化器的基本要求:

①使试样有效原子化;②使自由状态基态原子有效地产生吸收; ③具有良好的稳定性和重现形;④操作简单及低的干扰水平等。

 

5、测量条件选择  

(1)分析线:

一般用共振吸收线。

 

(2)狭缝光度:

W=DS没有干扰情况下,尽量增加W,增强辐射能。

 

(3)灯电流:

按灯制造说明书要求使用 

(4)原子条件:

燃气:

助燃气、燃烧器高度石墨炉各阶段电流值 

(5)进样量:

(主要指非火焰方法) 

6、分析方法

 

(1)工作曲线法   

最佳吸光度0.1---0.5,工作曲线弯曲原因:

各种干扰效应。

    

(2)标准加入法 

标准加入法能消除基体干扰,不能消背景干扰。

使用时,注意要扣除背景干扰。

 

习    题

1起谱线变宽的主要因素有哪些?

  

(1)自然变宽:

无外界因素影响时谱线具有的宽度 

(2)多普勒(Doppler)宽度ΔυD:

由原子在空间作无规热运动所致。

故又称热变宽。

 (3) 压力变宽ΔυL(碰撞变宽):

由吸收原子与外界气体分子之间的相互作用引起 

(4)自吸变宽:

光源空心阴极灯发射的共振线被灯内同种基态原子所吸收产生自吸现象。

 

(5)场致变宽(field broadening):

包括Stark变宽(电场)和Zeeman 变宽(磁场) 

⒉火焰原子化法的燃气、助燃气比例及火焰高度对被测元素有何影响?

  

①化学计量火焰:

由于燃气与助燃气之比与化学计量反应关系相近,又称为中性火焰 ,这类火焰, 温度高、稳定、干扰小背景低,适合于许多元素的测定。

 

②贫燃火焰:

指助燃气大于化学计量的火焰,它的温度较低,有较强的氧化性,有利于测定易解离,易电离元素,如碱金属。

 

③富燃火焰:

指燃气大于化学元素计量的火焰。

其特点是燃烧不完全,温度略低于化学火焰,具有还原性,适合于易形成难解离氧化物的元素测定;干扰较多,背景高。

 

④火焰高度:

火焰高度不同,其温度也不同;每一种火焰都有其自身的温度分布;一种元素在一种火焰中的不同火焰高度其吸光度值也不同;因此在火焰原子化法测定时要选择适合被测元素的火焰高度。

 

2子吸收光谱法中的干扰有哪些?

如何消除这些干扰?

 

一.物理干扰:

指试样在转移、蒸发和原子化过程中,由于其物理特性的变化而引起吸光度下降的效应,是非选择性干扰。

 

消除方法:

①稀释试样;②配制与被测试样组成相近的标准溶液;③采用标准化加入法。

 

二.化学干扰:

化学干扰是指被测元原子与共存组分发生化学反应生成稳定的化合物,影响被测元素原子化,是选择性干扰,一般造成A下降。

 

消除方法:

(1)选择合适的原子化方法:

提高原子化温度,化学干扰会减小,在高温火焰中P043-不干扰钙的测定。

 

(2)加入释放剂(广泛应用)(3)加入保护剂:

EDTA、8—羟基喹啉等,即有强的络合作用,又易于被破坏掉。

 (4)加基体改进剂 (5)分离法 

三. 电离干扰:

在高温下原子会电离使基态原子数减少, 吸收下降, 称电离干扰,造成A减少。

负误差 

 消除方法:

加入过量消电离剂。

(所谓的消电离剂, 是电离电位较低的元素。

加入时, 产生大量电子, 抑制被测元素电离。

 四. 光谱干扰:

 

吸收线重叠:

 

①非共振线干扰:

多谱线元素--减小狭缝宽度或另选谱线  

②谱线重叠干扰--选其它分析线 

五.背景干扰:

背景干扰也是光谱干扰,主要指分子吸与光散射造成光谱背景。

(分子吸收是指在原子化过程中生成的分子对辐射吸收,分子吸收是带光谱。

光散射是指原子化过程中产生的微小的固体颗粒使光产生散射,造成透过光减小,吸收值增加。

背景干扰,一般使吸收值增加。

产生正误差。

 消除方法:

 ⑴用邻近非共振线校正背景 ⑵连续光源校正背景(氘灯扣背景) ⑶Zeaman 效应校正背景 ⑷自吸效应校正背景 

第10章 电分析化学引论(P218)

1、电分析化学:

根据被测溶液所呈现的电化学性质及其变化而建立的分析方法 

2、分类:

 

(1) 电位分析法:

测量参数为电极电位(电池电动势); 

(2) 电解分析法:

测量电解过程中电极上析出的物质量; 

(3) 库仑分析法:

测量电解过程中消耗的电量; 

(4) 电导分析法:

测量参数为溶液的电导值; 

(5) 伏安分折:

  测量电流与电位变化曲线; 

(6) 极谱分析:

  使用滴汞电极时的伏安分析。

 

3、电池的表示形式与电池的电极反应:

 

表示形式:

 

1)用︱表示电池组成的每个接界面 

2)用‖表示盐桥,表明具有两个接界面 

3)发生氧化反应的一极写在左    发生还原反应的一极写在右 

4)溶液注明活度;气体应注明温度和压力 ( - ) Zn︱ZnSO4 (α1)‖CuSO4 (α2) ︱Cu (+) 

4、盐桥:

 

组成和特点:

高浓度电解质溶液 

正负离子迁移速度差不多 

(饱和KCl溶液+3%琼脂所成凝胶) 

盐桥的作用:

 

1)防止两种电解质溶液混和,消除液接电位,确保准确测定。

 

2)提供离子迁移通道(传递电子)。

 

5、被测电极的电极电位:

以标准氢电极为负极,被测电极为正极组成电池,所测电池的电动势。

 

6、指示电极和参比电极应用:

 

测得电动势计算出待测离子的活度或浓度;主要用于测定过程中溶液本体浓度不发生变化的体系。

 

7、金属︱金属离子电极 

(银、铜、锌、汞)√ 

(铁、钴、镍、铬)× 

8、参比电极—甘汞电极:

 

特 点:

 

a.制作简单、应用广泛; 

b.使用温度较低且受温度影响较大; 

c.当温度改变时,电极电位平衡时间较长; 

d. Hg (Ⅱ)可与一些离子发生反应。

 

9、** 对参比电极的要求:

 

1)电极电位稳定,可逆性好 

2)重现性好 

3)使用方便,寿命长 

10、参比电极使用注意事项:

   

⑴ 电极内部溶液的液面应始终高于试样溶液液面; 

(2) 污染误差。

 

11、膜电极:

 

特点(区别以上三种——第一、二和三类电极):

     

1)无电子转移,靠离子扩散和离子交换生膜电位     

2)对特定离子具有响应,选择性好 

12、中性载体膜电极:

 

中性载体:

电中性、具有中心空腔的紧密结构的大分子化合物。

例如:

颉氨霉素、抗生素、冠醚等 ;典型组成为:

离子载体1%,非极性溶剂66%,PVC33% 

13、酶电极:

指示电极表面覆盖了一层酶活性物质,发生酶的催化反应。

   

应用:

选择性相当高,用于有机及生物物啊质分析 缺点:

酶的精制困难,且寿命较短 

14、直接电位法的优点:

 

    

(1)设备简单、操作方便; 

(2)电极响应快,直接显示离子的浓度;     

(3)样品不需预处理;     

(4)用于微量分析; 

(5)实现连续和自动分析。

 

15、直接电位法的缺点:

 

(1)误差较大; 

(2)电极的选择性不理想;  

(3)电极的品种少;     

(4)重现性差。

 

16、电位滴定法:

利用电极电位的突跃指示滴定终点的滴定分析方法。

关键:

选择指示电极  

计算题:

郎伯—比尔定律;色谱理论塔板数  

比较AAS与UV—VIS的异同。

 

相同点都是光谱的类型,实质也都是吸收光谱。

 但是AAS是包含了紫外和可见波段,通过锐线光源发射特定波长的光,让物质吸收。

UV—VIS是用氘灯或是钨灯发射连续波长的光,其中某个波长被待测物吸收。

 AAS:

原子光谱,线光谱    UV—VIS:

分子光谱,带光谱 

第15章  色谱法引论(P300)

1.色谱法具有同时能进行分离和分析的特点而区别于其它方法,特别对复杂样品和多组份混合物的分离,色谱法的优势更为明显。

 

2.按固定相外形不同色谱法是如何分类的?

 

是按色谱柱分类:

 

①平面色谱法:

薄层色谱法、纸色谱法 

②柱色谱法:

填充柱法、毛细管柱色谱法

3.什么是气相色谱法和液相色谱法?

 

气体为流动相的色谱称为气相色谱。

 

液体为流动相的色谱称为液相色谱。

 

4.保留时间(tr)、死时间(t0)及调整保留时间(t’r)的关系是怎样的?

t’r = tr - t0 

5.从色谱流出曲线可以得到哪些信息?

 

①根据色谱峰的个数可以判断样品中所含组分的最少个数; 

②根据色谱峰的保留值可以进行定性分析; 

③根据色谱峰的面积或峰高可以进行定量分析; 

④色谱峰的保留值及其区域宽度是评价色谱柱分离效能的依据; 

⑤色谱峰两峰间的距离是评价固定相(或流动相)选择是否合适的依据。

 

6.分配系数在色谱分析中的意义是什么?

 

①K值大的组分,在柱内移动的速度慢,滞留在固定相中的时间长,后流出柱子; 

②分配系数是色谱分离的依据; 

③柱温是影响分配系数的一个重要参数。

 

7.什么是选择因子?

它表征的意义是什么?

 

是A,B两组分的调整保留时间的比值α= t’r(B)/t’r(A)>1 

意义:

表示两组分在给定柱子上的选择性,值越大说明柱子的选择性越好。

 

8.什么是分配比(即容量因子)?

它表征的意义是什么?

 

是指在一定温度和压力下,组分在两相分配达到平衡时,分配在固定相和流动相的质量比。

K=ms/mm 

意义:

是衡量色谱柱对被分离组分保留能力的重要参数; 

9. 理论塔板数是衡量柱效的指标,色谱柱的柱效随理论塔板数的增加而增加,随板高的增大而减小。

  

10.板高(理论塔板高度H/cm)、柱效(理论塔板数n)及柱长(L/cm)三者的关系(公式)?

       H=L / n 

11.利用色谱图如何计算理论塔板数和有效理论塔板数(公式)?

 

12.同一色谱柱对不同物质的柱效能是否一样?

 同一色谱柱对不同物质的柱效能是不一样的 

13.塔板理论对色谱理论的主要贡献是怎样的?

 

(1)塔板理论推导出的计算柱效率的公式用来评价色谱柱是成功的; 

(2)塔板理论指出理论塔板高度H 对色谱峰区域宽度的影响有重要意义。

 

14.速率理论的简式, 影响板高的是哪些因素?

 

μ:

流动相的线速 A:

涡流扩散系数 B:

分子扩散系数 C:

传质阻力项系数 

15.分离度可作为色谱柱的总分离效能指标。

 

16.如何根据分离度分析色谱分离的情况?

 

R<1    部分重叠 R=1    基本分离 R=1.5

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1