公务员考试半年备考五十讲之有趣的行测数图推理.docx
《公务员考试半年备考五十讲之有趣的行测数图推理.docx》由会员分享,可在线阅读,更多相关《公务员考试半年备考五十讲之有趣的行测数图推理.docx(19页珍藏版)》请在冰豆网上搜索。
公务员考试半年备考五十讲之有趣的行测数图推理
公务员考试半年备考五十讲之有趣的行测数图推理
http:
//www.chinagwy.org 2009-07-07 来源:
国家公务员网
【字体:
大中小】
对于大多数考生来说,说到数字推理,第一反应是一排数列,其中某一项或者某两项空缺出来,请考生按照一定规律推理出空缺项的数字。
这类数字推理被我们称为数列推理。
在北京市公务员考试中,除了5道数列推理之外,每年还会考察5道数图推理。
即所给的数字包含在一定图形当中,根据规律推理出图形中缺少的数字。
这类问题基本上属于北京市公务员特有类型的题目,但在2008年国家公务员考试中,也出现了一道数图推理;在山西省的公务员考试中,也曾经出现过数图推理。
由此可见,今后的公务员考试中,数图推理再次出现的可能性比较大。
数图推理的形式是给出三个外形相同的图形,其中前两张图形中的数字填写完整,而最后一张图中会空缺一个数字,根据前两个图形中数字之间的运算规律来推出第三个图形中的空缺数字。
而对于数图推理,一定要把握四个原则。
原则一,不用横向比较不同图形中的同一位置上的数字之间的变化规律。
实际上,一般来说不同图形同一位置上的数字之间没有任何变化规律。
原则二,图形中的运算规律可能不止一种,但是同一种运算规律必须能够同时满足前两张完整的图形,而只要找到一种运算规律能够满足前两张图形,那么就可以直接应用这种运算规律带入第三张图形中进行推算。
原则三,图形中的运算规律都是简单的加、减、乘、除、乘方运算,不需要考虑复杂运算。
其中加、减、乘运算应用很多,除法运算极少量题目会遇到,乘方运算在考试中仅出现过一次。
原则四,有时候可能在运算中会添加常数项,如“加1、减1、乘2、除2”等,但这些常数项一定不复杂。
在各类公务员考试中,出现过的数图推理按照图形形状,一共有四种类型。
(一)饼图
在北京市公务员考试中,往往会考察两道饼图试题。
解决饼图试题的主要方法是观察对角线两组数字运算结果之间的等量关系。
极个别的题目从对角线无法得到规律。
例题1:
2006年北京市社会在职人员考试第6题。
A.24B.16C.6D.3
【答案】:
A。
【名师解析】:
这类问题比较有趣。
一个对角线的数字相乘等于另一个对角线两个数字组成的两位数。
左上角、右下角数字之积,等于左下角、右上角两个数字组成的两位数。
3×4=12
5×6=30
?
×2=48
由此可知所求数字为24。
请考生注意,在进行相乘时,两组数字的顺序不能颠倒,否则这道题容易错选为
例题2:
2007年北京市大学应届毕业生考试第6题。
A.4B.8C.16D.32
【答案】:
C。
【名师解析】:
左上角、右下角两数之差,等于左下角、右上角两数之积。
48-18=5×6
5-3=1×2
0-5=2×?
由此可知所求数字为-2.5。
例题3:
2006年北京户口京外大学应届毕业生考试第7题。
A.2B.4C.5D.7
【答案】:
A。
【名师解析】:
这是唯一一道需要引入乘方运算的考题。
左上角、右下角两数之和,等于左下角、右上角两数之和的平方。
15+1=(3+1)2
20+5=(3+2)2
16+20=(4+?
)2
由此可知所求数字为2。
例题6:
2006年北京市大学应届毕业生考试第10题。
A.20B.30C.61D.110
【答案】:
B。
【名师解析】:
由于第一张图的四个角上的数字都相等,它们可以通过很多种运算得到中间的数字,因此遇到这类问题先看四个角数字不同的图找规律。
左上角、右下角数字之和,加上左下角、右上角数字之和,得到中间数字。
也就是四个角上的数字之和等于中间的数字,但是为了保持规律一致性,仍然将四个数字沿对角线方向分为两组。
(4+4)+(4+4)=16
(10+4)+(8+2)=24
由此可知所求数字为
(9+5)+(5+11)=30
例题7:
2006年北京户口京外大学应届毕业生考试第8题。
A.21B.42C.36D.57
【答案】:
B
【名师解析】:
这道题的规律比较特殊,需要乘以常数项。
左上角、右下角数字之和,加上左下角、右上角数字之和,再乘以2得到中间数字。
也就是四个角上数字之和的2倍得到中间数字。
2×[(4+9)+(10+5)]=56
2×[(2+1)+(8+10)]=42
由此可知所求数字为
2×[(3+0)+(6+12)]=42
(三)九宫格
九宫格图形数图推理仅在2007年北京市社会在职人员考试以及2009年北京市大学应届毕业生考试中出现过两次,每次5道题。
虽然这类问题只有一张图,但是完全可以按照横向拆分的方法,将九宫格拆分为三组横向的数字,每组数字之间具有共同的运算规律。
例题8:
2007年北京市社会在职人员考试第6题。
A.4B.8C.16D.32
【答案】:
B。
【名师解析】:
横向来看,第一组数字16,4,1构成公比为1/4的等比数列;第三组数字64,16,4构成公比为1/4的等比数列。
由此可知,第二组数字32,?
,2也构成公比为1/4的等比数列,因此所求数字为8。
例题9:
2007年北京市社会在职人员考试第7题。
A.26B.17C.13D.11
【答案】:
D。
【名师解析】:
横向来看,第一组数字12+9+(-6)=15;第二组数字2+3+10=15。
由此可知,第三组数字1+3+?
=15,因此所求数字为11。
例题10:
2007年北京市社会在职人员考试第8题。
A.106B.166C.176D.186
【答案】:
D。
【名师解析】:
横向来看,第二组数字(73+37)×2=218;第三组数字(23-12)×2=22。
由此可知,第一组数字(84+9)×2=?
,因此所求数字为186。
(四)三角形
目前为止,三角形的图仅在2008年国家公务员考试第42题中出现过一次。
例题11:
2008年国家公务员考试第42题。
A.12B.14C.16D.20
【答案】:
C
【名师解析】:
底角两个数字之和,减去顶角数字,得到的结果的2倍为中间数字。
(7+8-2)×2=26
(3+6-4)×2=10
由此可知所求数字为
(9+2-3)×2=16
总体来说,数图推理并不是公务员考试的重点,但是考生必须熟悉这部分内容,一方面这类问题的思考模式与数列推理有本质区别,考生如果考前并不知道其规律的话,如果在考试当中遇到这类问题会显得束手无策;另一方面通过对于数图推理题目的练习,可以很好的锻炼数学基本运算,对于解决其他数学问题也有很大帮助。
2010公务员考试行测新题及解析
http:
//www.chinagwy.org 2009-07-01 来源:
国家公务员网
【字体:
大中小】
随着2009年各地公务员考试的逐步推进,不少2009年度地方公务员考试也接近尾声状态,而2010年度公务员考试的帷幕也徐徐拉开。
回顾2009年度的考试,有不少新类型的试题值得我们关注,在此挑选了2009年国家公务员考试行政职业能力测验部分的新型题目进行总结,这些题目在备考2010年度的公务员考试中,无论是国家考试还是地方考试,都将成为制胜的关键。
(一)常识判断——注重时事
首先特别要提醒备考考生,即便是在2008年11月29日仍然还有考生以为第二天将要举行的国家公务员考试的常识判断均为法律常识,说明这些考生并没有仔细阅读考试大纲。
2007年、2008年连续两年的国家公务员考试25道常识判断考题均为法律常识,但是2009年国家公务员考试笔试部分的最大改革就是常识判断部分的内容涉及“法律、政治、经济、管理、历史、自然、科技等方面,侧重考查应试者的法律知识运用能力”。
最终根据真题统计,法律常识类的题目仅占据25道题中的7道而已。
2009年国家公务员考试常识判断中最为突出的一类题目就是时事方面的问题。
【例题1】(2009年国家公务员考试第1题)
北京奥运会开幕式上展示的巨大的“和”字,其蕴含的思想源自:
()。
A.墨家B.道家C.儒家D.法家
分析:
2008年北京奥运会是一个不可避免的话题,出题者在本题中既涉及的奥运会的内容,又涉及了文化方面的内容,此题安排的非常巧妙。
答案:
C。
【例题2】(2009年国家公务员考试第14题)
美国次贷危机中的“次”是指:
()。
A.贷款人的第二次贷款
B.贷款机构的信用等级较低
C.贷款机构的实力和规模较小
D.贷款人的收入较低,信用等级较低
分析:
2008年下半年美国次贷危机全面爆发,引发全球金融海啸,此事全球无人不知晓。
作为国家公务员的储备人才,有关金融危机的最基本内容必须了解。
答案:
D。
为了应对逐渐增多的时事常识,需要考生在平时多积累新闻知识,这些新闻主要涉及我国经济、社会发展方面,世界经济发展方面的新闻。
(二)言语理解与表达——成语应用
言语理解与表达模块近几年较为固定,均为40道试题,其中20道试题是“选词填空”,另外20道试题是“片段理解”。
在选词填空部分,共有11道试题涉及成语的运用,占据了半壁江山还多。
【例题3】(2009年国家公务员考试第30题)
互联网并非________、整齐划一的技术革命的产物,而是在各种混乱、争论和复杂的利益纠葛中发展成今天的规模和影响力。
正是一个个小的草根网络,最终汇集成一个________的大潮流。
填入画横线部分最恰当的一项是:
()。
A.自上而下不可逆转B.一呼百应铺天盖地
C.有条不紊举世瞩目D.运筹帷幄波涛汹涌
分析:
与“整齐一划”并列的词语只能是“自上而下”或者“有条不紊”,而只有“不可逆转”才能修饰“潮流”。
答案:
A。
【例题4】(2009年国家公务员考试第39题)
今天的汉语变化之快,已经是字典的改版________的了,而所有这些的背后,是一个________的社会。
填入画横线部分最恰当的一项是:
()。
A.望尘莫及日新月异B.鞭长莫及纷繁复杂
C.难以企及欣欣向荣D.措手不及瞬息万变
分析:
能够修饰“快”的是表征时间变化之快的“措手不及”,而“瞬息万变”恰好与“汉语变化”相对应。
答案:
D。
以上选取的两道题是最具有典型代表的成语应用的题目。
从这些题目也可以看出,考查的成语均为常用成语,因此希望考生在平时阅读时注重积累和思考。
近几年不少选词填空的语句都选自《三联生活周刊》和《财经》杂志,如果考生能够在平时多阅读此类杂志,相信对于所填写的词汇会更有把握。
(三)图形推理——整体性质
在历年公务员考试的图形推理模块,图形主要注重内部元素的类型、数量、位置的变化,这些变化都可以称为细节,或者叫做局部性质。
而在2009年国家公务员考试中,3道图形推理题目都需要考虑图形的整体性质。
图形推理的这种变化需引起各位的高度重视。
在前几年的公务员考试中,图形推理甚至已经脱离了“图”的主题,转而成为了变相的数字推理。
新东方北斗星詹凯老师认为正是2009年的国家公务员考试的图形推理才真正回归到了“图”这个主题上。
而这类问题有相当一部分原题可以在各种各样的智力测验中找到原型。
(四)逻辑判断——否定之否定
有不少人看到“否定之否定”之后,第一直觉是“表示肯定”。
请看题——
【例题8】(2009年国家公务员考试第99题)
所有的恐龙都是腿部直立的“站在”地面上的,这不同于冷血爬行动物四肢趴伏在地面上;恐龙的骨组织构造与温血动物的骨组织构造相似;恐龙的肺部结构与温血动物非常相近;在现代的生态系统中(例如非洲草原),温血的捕食者(例如狮子)与被捕食者(例如羚羊)之间的比值是一个常数,对北美洲恐龙动物群的统计显示其中捕食者和被捕食者之间的比例与这个常数近似。
这些都说明恐龙不是呆头呆脑、行动迟缓的冷血动物,而是新陈代谢率高、动作敏捷的温血动物。
以下哪项如果为真,最不能反驳上述推理?
()。
A.鲸类等海生哺乳动物并不是直立的,却是温血动物
B.有些海龟骨组织构造与哺乳动物类似,却是冷血动物
C.关于北美洲恐龙动物群捕食者和被捕食者比例的统计有随意性
D.冷血动物和温血动物生理结构上的主要差别在于心脏结构而非肺部结构
分析:
“最不能反驳”并不代表“肯定”,不能反驳还可能是与原命题无关的内容。
题干中的结论“恐龙不是呆头呆脑、行动迟缓的冷血动物,而是新陈代谢率高、动作敏捷的温血动物”恰好由四个论点支持,而题目的选项也恰好针对四个论点各出一个选项。
A选项如果要对该结论进行反驳,则应当列举一些能够直立“站在”地面上却是冷血动物的例子,因此该选项无法有效反驳题目的结论。
答案:
A。
(五)数字推理——组合数列
2009年国家公务员考试数字推理部分难度较大,其中105题,即最后一道数字推理题的规律及其隐蔽,只有极少数考生发现其规律。
【例题9】(2009年国家公务员考试第105题)
153,179,227,321,533,()。
A.789B.919C.1079D.1229
分析:
该数列的尾数呈现“3、9、7、1、3、9……”的规律(因为四个选项的尾数均为9),该规律恰好与“3”的整数幂次的尾数规律一致,因此将已知数列变形为150+3,170+9,200+27,240+81,290+243的形式,发现该数列其实是一个简单的二级等差数列150,170,200,240,290,350与一个简单的等比数列3,9,27,81,243,729。
因此所求项恰好为350+729=1079。
答案:
C。
组合数列在以前的公务员考试中并没有出现过,对付这类数列的关键方法是观察数列尾数的变化规律。
(六)数学运算——水库问题
在以前的公务员考试中,曾经出现过比水库问题简单一些的水管问题。
虽然难度增加,解题的根本思路并未发生变化。
【例题10】(2009年国家公务员考试第119题)
一个水库在年降水量不变的情况下,能够维持全市12万人20年的用水量。
在该市新迁入3万人之后,该水库只能够维持15年的用水量。
市政府号召节约用水,希望能将水库的使用寿命提高到30年。
那么,该市市民平均需要节约多少比例的水才能实现政府制定的目标:
()。
A.1/4B.2/7C.1/3D.2/5
分析:
这道题需要注意到每年还有一定的降水量。
假设每万人每年的用水量为1,而每年的降水量为N,那么根据题意可知
12×20-20×N=(12+3)×15-15×N
该等式两端都表示的是不计降水量,水库目前的现有水量。
由此解得,N=3。
假设政府制定的规划当中,要求每万人的用水量变为以前的M倍,那么根据题意可知
(12+3)×M×30-30×3=12×20-20×3
该等式两端仍然表示的都是不计降水量,水库目前的现有水量。
由此解得,M=0.6。
由此可知,每个人需要节约用水的量为1-0.6=2/5。
答案:
D。
值得注意的是,数学运算中有三分之一的试题都是通过传统试题略加修改而得的,因此在准备数学运算部分备考时,一定要认真练习往年的真题。
对近年公务员考试的试题进行跟踪研究,公务员考试喜欢将一些新的题目“重复”考查,直到绝大多数考生对这类题目熟悉之后,再换成别的类型的题目。
比如2009年国家公务员考试第112题与2008年国家公务员考试第60题,虽然在题目表述上有所不同,但最终的计算式却是完全相同。
【例题11】(2009年国家公务员考试第112题)
甲买了3支签字笔、7支圆珠笔和1支铅笔,共花了32元,乙买了4支同样的签字笔、10支圆珠笔和1支铅笔,共花了43元。
如果同样的签字笔、圆珠笔、铅笔各买一支,共用多少钱:
()。
A.10元B.11元C.17元D.21元
【例题12】(2008年国家公务员考试第60题)
买甲、乙、丙三种货物,如果甲3件,乙7件,丙1件,需花费3.15元;如果甲4件,乙10件,丙1件,需花费4.20元。
甲、乙、丙各买一件,需花费多少钱:
()。
A.1.05元B.1.40元C.1.85元D.2.10元
分析:
如果不看具体购买的货物,两道题的计算式均可化为(3A+7B+C)以及(4A+10B+C)的形式,所求均为(A+B+C)的值而前者乘以3倍,后者乘以2倍,两者再进行做差可直接得到(A+B+C)的结果
答案:
A(例题11),A(例题12)
不知是巧合还是可以安排,这两道题的正确选项都一致。
在此仍然强调,历年真题是公务员考试准备阶段的最佳练习题,只有在对历年真题进行了深入、全面的练习之后,再进行模考练习才会有效。
而每年考试中出现的新型题目,一般都会在其后连续几年的考试中反复考查,这些考试真题恰是考生们备考的重点所在。
公务员考试半年备考五十讲之数列三条黄金法则
http:
//www.chinagwy.org 2009-07-06 来源:
国家公务员网
【字体:
大中小】
作为公务员考试行政职业能力测验中阅读量最小的一类题型,数列推理经常让很多考生觉得无从下手,因为每一道题的信息量都非常少。
尽管在公务员考试中可能出现的数列类型相对固定,只要按部就班的对各类数列的可能的性质进行推算,绝大多数的题目都可以得到正确的答案,但这往往耗时较长或者需要考生具备比较扎实的数学基本功。
在考场上,平均每道题的解题时间只有不到一分钟,而若每一道题都按部就班的计算,时间是不容许的。
那么,有没有可能在有限的考试时间内迅速准确的锁定正确答案,既省时又省力呢?
答案是:
有的。
请先看以下两道例题:
2007年国家公务员考试41题
2,12,36,80,()
A.100 B.125 C.150 D.175
本题的正确答案是C,因为前后项两两做差后得到的二级数列是10,24,44,70;再次做差得到的三级数列是14,20,26的等差数列,即原数列是三级等差数列。
这当然是最基础的解法,计算起来也不会出现错误,但耗时较长。
而且由于题干中给出的已知项只有四项,因此需要将选项依次代入才能得到正确答案。
计算能力不是太强或者不太熟练的考生,可能需要花费一分钟以上的时间才能把本题解出。
实际上,这道题在考场上完全可以用三秒钟的时间解决,请看:
首先,该数列所有给出的已知项都是偶数,因此空缺的一项也应是一个偶数,可以排除B、D选项;其次,该数列的已知项在依次增大并且越增越快,可以排除A选项,正确答案只能是C,和按部就班计算得到的结果完全一致。
事实上,我们在排除选项的时候只应用到了数列的两个基本性质。
第一,奇偶性。
具备奇偶性质的数列无外乎只有三种情况,全是奇数、全是偶数、奇偶交错。
当给出的已知项符合其中任一种规律的时候,未知项应该也符合该变化规律。
第二,增减性。
单调变化的数列,其增减性可能有四种情况:
单调递增且越增越快、单调递增且越增越慢、单调递减且越减越慢、单调递减且越减越快。
如果用比较直观的图形来表示的话,增减性的变化,就是如下所示的几种情形:
如果给出的一个数列所给的已知项符合这四种变化规律之一的话,那么单调性往往可以用来排除错误选项或者锁定正确答案。
2001年国家公务员考试43题
6,18,()78,126
A.40B.42C.44D.46
本题的正确答案是B,因为将各选项分别代入后对前后项依次做差,只有B选项能够得到一个二级等差数列12,24,36,48。
但如果通过观察我们可以发现,所给的已知项全部都可以被6整除,那么所求的项应该也能被6整除,符合条件的只有B选项,与运算得到的结果完全相符合。
这里我们使用了数列的第三个基本性质,整除性。
通常来说,如果一个数列中的已知项都能被某个数整除,那么所求的未知项应该具有同样的整除性质。
特别是能被6整除的性质,在公务员考试中曾经多次考查,比如2001年国家公务员考试第42题:
6,24,60,132,()
A.140B.210C.212D.276
本题应用整除性虽然不能直接得到正确答案,因为B项210和D项276都能够被6整除,但至少起到了简化题目的作用,将答案由四选一变成了二选一,而在B、D的取舍中,只需要简单将任意一个选项代入就可以了。
奇偶性、增减性、整除性这三大基本性质,可以说是数列推理中屡试不爽的三道“黄金法则”。
如能运用得法,在考场上绝对可以获益良多。
虽然这三大性质不一定在任何一个数列中都能够完全得到体现,但在这么多年的公务员考试中,仅仅应用这三大性质就可以解决的数列推理题目数不胜数,甚至不乏用正常途径难以解决的一些偏题、怪题。
在2005年的国家公务员考试中,曾经出现过一道“没人性”的数列推理,是当年国家二卷的29题,题目如下:
1,0,-1,-2,()
A.-8B.-9C.-4D.3
如果本题抛开选项,只看题干的话,相信99.99%的人第一反应下一项应该是-3,或者可以负责任的说,这就应该是思维正常人的第一反应。
但四个备选答案看来看去,就是不见-3的影子。
用小沈阳的话来说就是,-3“可以有”,但这个“真没有”。
以至于当年在考场上,很多考生都在怀疑是否印刷出了问题,将D项少印了一个负号。
事实上本题并没有出现任何的印刷错误,而正确答案应该是B项-9,运算规律如下:
0=13-1;-1=03-1;-2=-13-1
因此所求项应该是-23-1=-9。
也就是说,这道题并不像表面上第一眼看去那样是一个递减的等差数列,其骨子里是一个单项之间的递推数列,出题人能够在1,0,-1,-2这四个数之间想到这样一种规律,不得不说已经超出了“人类”的思考范畴。
对于这道题,新东方北斗星贾柱保老师有两句话的评价:
第一,如果任何一个考生在考场上做这道题的时候,第一反应空缺项应该是-3,那这个考生的智商没有任何问题,完全是正常人。
第二,如果有一个考生在考场上能够第一反应正确答案是-9,这名考生已经非常接近出题人的“超人”水平了,把这种人录取为国家机关公务员很可怕。
也就是说,这道题已经不仅仅是用“变态”两个字足以形容的题目了,真正能在考场上发现其运算规律的考生寥寥无几。
但是,即便不能发现正确的规律,要得到这道题的正确答案却并不困难,请看:
题目中所给的已知项呈奇偶数交错排列,奇数、偶数、奇数、偶数,因此空缺项应该是一个奇数,排除A、C;又因为已知项在依次递减,排除D,正确答案只可能是-9,至于为什么是-9,到底是怎么算出来的,我们毫不关心。
也就是说,尽管有些题目在命题人的本意那里是比较古怪甚至很难的运算关系,但由于所有的题目都是以选择题的方式出现,那么未必需要完美的推出正确的运算关系才能够解题。
也正是因为行政职业能力测试全部都是客观题的这一特点,我们