地热资源勘查作业指导书.docx
《地热资源勘查作业指导书.docx》由会员分享,可在线阅读,更多相关《地热资源勘查作业指导书.docx(93页珍藏版)》请在冰豆网上搜索。
地热资源勘查作业指导书
地热资源勘查
作业指导书
内蒙古自治区地质勘查基金管理中心
二O一三年三月
前言
据中国地质调查局2005年估算,我区就盆地型地热资源可采热水117400万m3/a,居全国之首。
自治区地质勘查专项资金设立以来,共安排地热勘查项目51项,也取得了突破性成果,西辽河平原、河套平原、鄂尔多斯盆地、海拉尔盆地相继成功地打出了热水井。
为了规范地热勘查工作,提高勘查与成果报告编写质量,我中心依据相关规范,编写了本作业手册。
初稿完成后,内蒙古自治区地质矿产勘查开发局、内蒙古自治区地质调查院、内蒙古自治区第七地质矿产勘查开发院的专家详细审阅了初稿,提出了许多宝贵意见。
地热勘查项目,往往布置较多的地面物探工作,为了工作方便,以附录的形式,附了“大地电磁测深法作业指导书”与“地热勘查二维地震勘探资料采集作业指导书”,供工作时参考。
依据自治区几年来地热勘查实践,本作业指导书少量内容与《地热资源地质勘查规范》(GB/T11615—2010)不一致,请各项目承担单位及时反馈意见,不断完善本作业书。
第一章地热资源勘查的内容及基本技术要求1
一、地热资源勘查阶段划分及主要工作任务1
二、地热资源储量分类3
三、地热规模分级、温度分级3
四、地热田及热储类型4
五、地热勘查类型划分4
六、地热勘查工程控制程度4
第二章地热勘查主要技术方法及要求6
第一节区域地质资料的搜集和分析6
第二节航卫片解译6
第三节地热地质调查6
第四节地球化学测量9
第五节地球物理勘查14
第六节地热钻探14
第七节地热井产能测试28
第八节动态监测34
第三章地热资源/储量计算与评价38
第一节计算原则38
第二节计算参数的确定38
第三节地热资源/储量计算方法41
第四节地热资源/储量可靠性评价47
第五节地热流体质量评价49
第六节地热资源开发利用评价50
第四章资料整理与报告编写要求52
第一节资料整理52
第二节报告编写要求52
附件一:
大地电磁测深法作业指导书54
附件二:
地热勘查二维地震勘探资料采集作业指导书71
附录三:
地热勘查使用的标准91
第一章地热资源勘查的内容及基本技术要求
一、地热资源勘查阶段划分及主要工作任务
地热资源勘查分为地热资源调查、预可行性勘查、可行性勘查及开采4个阶段。
大、中型地热资源勘查项目分阶段进行,地热地质条件简单的中、小型或单个地热井勘查项目可合并进行。
1、地热资源调查阶段
工作内容主要是充分收集区内已有的区域地质、航卫片图像地质解译、重力航磁地震勘查、煤炭石油勘勘查、地球化学、放射性调查以及地热资源勘查开发资料,并进行系统分析研究。
开展调查的范围可根据需要确定,重点对地热天然露头(泉),地热异常区和地热井开展野外调查,分析地热地质条件,根据已有资料及调查成果,预测调查区的地热资源量,提交地热资源调查报告或开发利用前景分析报告,确定地热资源重点勘查开发前景区,为国家或地区地热资源勘查远景规划提供依据。
2、地热资源预可行性勘查阶段
选定在有地热资源开发前景但又存在一定风险的地区进行地热资源预可行性勘查。
由于我区地热研究程度非常低,为了尽可能降低勘探风险,本阶段勘查工作一般分阶段进行。
第一阶段,充分收集与地热有关的各种资料,有针对性的进行地热地质调查,必要时开展地球化学勘查。
第二阶段在地热地质调查及分析研究已有与地热有关的各类勘查资料的基础上,选择重点工作区,在重点工作区开展地面物探、地球化学勘查工作。
依据勘查成果,综合各类已有资料编制地热井井位论证报告,并对井位论证报告进行评审。
第三阶段地热井施工。
该阶段依据井位论证报告与报告的专家评审意见与建议,编写地热井施工设计,设计书应按照井位论证报告专家评审意见与建议,进一步确定井位、井深、井结构等关键问题,设计批准后进行地热井施工。
通过地热勘探井,结合已有和地面勘查资料初步查明地热田及其外围的地层、构造、岩浆(火山)活动情况,地温异常范围,地热流体的天然排放量、温度、物理性质和化学成份,圈定地热资源有利开发的范围,确定进一步勘查地段;根据地热钻井工程,初步查明地热田的地层结构,地热增温率,热储的埋藏深度、岩性、厚度与分布,地热流体温度、压力和化学组分,并通过井产能测试,初步了解热储的渗透性、井的热流体产率、温度等;采用适宜的方法计算地热储量、地热流体可开采量,对地热资源开发利用前景做出评价,提出地热资源预可行性勘查报告,为地热资源试采及进一步勘查与开发远景规划的制定提供依据。
3、地热资源可行性勘查阶段
结合地热资源开发规划或开发工程项目要求,在地热资源预可行性勘查阶段选定的地区或开发工程所选定的地段上进行。
勘查范围可以是一个地热田,也可以是划定的拟开采地区。
结合我区的实际,主要受断裂构造控制呈带状分布的地热田,工作区范围应包括整个地热田,主要目的是进一步圈定地热异常范围,确定控热断裂构造的规模、产状,断裂带宽度,地热流体的产量、温度、质量及其变化规律。
呈层状分布的盆地型地热田,地质、水文地质研究程度比较高,特别是石油地震勘查覆盖的盆地,工作区可适当选定的大些,反之选定的小些。
由于该阶段要有多个地热井的测试资料,层状分布的盆地型地热田地热井多数在1000—3000m,故该类地热田勘查面积一般不超过50km2。
本阶段的具体工作要求按照《地热资源地质勘查规范》(GB/T11615—2010)执行,其成果满足地热资源开采设计的需要。
4、地热资源开采阶段
对已规模化开采地热资源的地热田或地区,应结合开采中出现的问题与地热资源管理的需要,加强开采动态监测、采灌测试、热储工程与地热田水、热均衡研究,每5年对地热流体可开采量及开采后对环境的影响进行重新评价,为地热资源合理利用、有效保护和可持续开发提供依据。
我区目前尚未开展该阶段的勘查工作。
对开采历史较长的、地热流体产量或质量发生较大变化的,主要受断裂构造控制呈带状分布的地热田可考虑进行勘查。
主要对地热流体动态(开采量、水头压力、水温、水质)进行长期观测研究,对热储进行回灌试验研究,确定保持地热田持续开发利用的采灌强度。
地热资源/储量报告,其成果应满足地热资源持续开发与科学管理的需要。
二、地热资源储量分类
《地热资源地质勘查规范》(GB/T11615—2010)规定,经勘查评价的地热资源/储量,地热流体可开采量依据地质勘查可靠程度分为:
验证的、探明的、控制的和推断的四级(见表1—1)。
表1—1地热资源/储量分类简表
勘查阶段
开采
可行性勘查
预可行性勘查
调查
地热资源/储量分类
地热流体可开采量
验证的
探明的
控制的
推断的
地热储量
热储存量
三、地热规模分级、温度分级
表1—2地热田规模分级
地热田规模
高温地热田
中、低温地热田
电能/MWe
保证开采年限/年
热能/MWt
保证开采年限/年
大型
>50
30
>50
100
中型
1050
30
1050
100
小型
<10
30
<10
100
表1—3地热资源温度分级
温度分级
温度(t)界限/℃
主要用途
高温地热资源
t150
发电、烘干、采暖、
中温地热资源
90t<150
烘干、发电、采暖、
低温地热资源
热水
60t<90
采暖、理疗、洗浴、温室、
温热水
40t<60
理疗、洗浴、采暖、温室、养殖
温水
25t<40
洗浴、温室、养殖、农灌
1注:
表中温度是指主要储层代表性温度
四、地热田及热储类型
1、以温度压力划分
高温地热田
地热流体温度150℃。
我区目前还没有发现该类型的地热田。
地压型地热田
是存在于大河入海处的新近纪滨海盆地碎屑沉积物中的地热资源。
其含水层埋深2~3千米,由于流体压力超过了静水压力×帕(反映了上覆盖层的部分负荷),流体温度一般是150~180℃,更深处可达260℃,井口压力可达(280~420)×10帕,因此它除了是一种热能资源外,同时还是一种水能资源。
我区没有该类型地热田。
2、以热储性质划分
主要受断裂构造控制呈带状分布的地热田
呈层状分布的盆地型地热田
五、地热勘查类型划分
表1—4地热勘查类型
类
型
主要特征
高温
地热田
(I)
I-1
热储呈层状,岩性和厚度变化不大或呈规则变化,地质构造条件比较简单
I-2
热储呈带状,受构造断裂及岩浆活动的控制,地质构造条件比较复杂
I-3
地热田兼有层状热储和带状热储特征,彼此存在成生关系,地质构造条件复杂
中低温
地热田
(II)
II-1
热储呈层状,分布面广,岩性、厚度稳定或呈规则变化,构造条件比较简单
II-2
热储呈带状,受构造断裂控制,地热田规模较小,地面多有温、热泉出露
II-3
地热田兼有层状热储和带状热储特征,彼此存在成生关系,地质构造条件比较复杂
六、地热勘查工程控制程度
地热资源调查阶段以收集区域地球物理勘查资料为主;可(预可)行性勘查阶段以面积物探为主,勘查区应等于或略大于地质调查的范围,物探工作测线应垂直主要构造走向,精测剖面应通过拟定地热钻井部位,勘查深度应大于拟钻地热井的深度;开采阶段,可根据开采地热资源布井的需要,进行点上的勘查或重点地段的补充性勘查。
工作量应满足相应比例尺物探精度和勘查深度的要求。
根据我区的实际情况,呈层状分布的盆地型地热田,研究程度比较高,特别是石油地震勘查覆盖的盆地,钻探孔及生产井单孔可控制面积可取最大值。
表1—5地热资源勘查控制程度
控制程度
调查阶段
预可行性勘查阶段
可行性勘查阶段
开采阶段
地质调查
工作比例尺
小型
1/5万
1/万
≥1/1万
≥1/1万
中型
1/10万
1/5万
≥1/万
≥1/万
大型
1/20万
1/10万
≥1/5万
≥1/5万
钻探孔及生产井
单孔可控制面积
(km2/孔)
I-1型
/
<
I-2型
/
<
I-3型
/
<
II-1型
/
<
II-2型
/
<
II-3型
/
<
2注:
同一类型地热田钻探,构造条件复杂,具有多层热储者取小值;构造条件比较简单者取大值。
第二章地热勘查主要技术方法及要求
第一节区域地质资料的搜集和分析
地热资源的埋藏分布大多与区域构造断裂,基底埋藏分布,深部地层岩性等密切相关,广泛搜集区域地质构造资料及已有石油,煤炭的勘查资料,是开展地热勘查的必备工作,进而确定地热勘查区所处地质构造部位,基底埋藏特征、地层岩性特征、地热水储存和运移特征等,为地热勘查提供基础地质条件。
收集的资料主要包括以下几方面
1、1:
20万—1:
5万区域地质测量成果。
2、1:
20万—1:
5万重力、航磁、电法物探资料。
3、石油勘查成果资料,主要有地震勘查时间剖面及其解释推断剖面平面成果图件,勘探孔资料(钻孔柱状图、测井资料、参数井获取的各种参数)。
4、煤炭勘查资料,主要有地震勘查、钻探、测井、测温等成果。
自治区在各盆地中大多进行了煤炭勘查,资料比较丰富。
第二节航卫片解译
航卫片的解译可以判断地热勘查区地质构造基本轮廊及隐伏构造;可以显示泉群和地热溢出带位置,地面水热蚀变带的分布,热红外解译可判断地表异常分布等。
在勘查面积较大,已有地质资料较少地区,可提供较多的地热地质信息。
该方法在主要受断裂构造控制呈带状分布的地热田勘查中更加有效适用,应采用不同时段的高分辨率的数据源(如我国已启动高分辨率对地观测系统资源三号卫星数据)进行解译。
第三节地热地质调查
一、地热地质调查的工作比例确定
地热地质调查比例尺调查阶段一般为1:
20万—1:
5万,预可行性勘查阶段一般为1:
5万,可行性与开采勘查阶段一般为1:
5—1:
1万。
二、不同类型地热田调查重点
1、主要受断裂控制的带状地热田,着重调查断裂带的位置、类型、规模、产状、断距、力学性质、活动性及断裂带附近节理裂隙发育程度、断裂带充填物、胶结情况,测定断裂带附近的地温及水化学成分,调查侵入岩、火山岩的分布、岩性及其与构造的关系,圈定地热异常区。
2、对层状分布的的地热田,依据重力、磁法、电法及地震资料,确定盆地隆起与凹陷的范围、深度,判断沉积物的特征与变化规律,大致确定可能的热储层位、断裂构造的的有无控热性。
3、进行井泉调查。
对已有的井孔进行调查,尤其的深的井孔,了解其深度、揭露的地层、含水层位、水质、水量、水温情况。
调查泉水成因、流量、温度及其随季节的变化、水质、泉附近有无泉华、泉华的性质。
4、进行水质调查。
在井泉有控制性的采取水质化学分析样,分析与热水有关的化学组分。
详见第四节地区化学测量。
三、地热地质调查内容与基本技术要求
(一)地热地质调查
调查地热田的地层岩性、构造特征、地热显示特征,确定可能的热储层、热储盖层、隔水层;调查热储层的岩性、厚度、埋深、分布、相互关系及边界条件,条件允许时应收集热储孔隙率、弹性释水系数、渗透系数、压力传导系数、热储压力(水头);观测天然温泉的水温、水量;测试天然温泉的物理性质与化学成份、同位素组成、有宜及有害成份。
调查至少采用与工作比例尺相同的地形图作底图,填图采用穿越法为主,辅以追踪法,用GPS等仪器定位,并将重要地质观测点绘于图上,以查明地层层序、厚度、岩性组合特征、分布范围、标志层、构造、构造形态、泉点分布等,对地层分界线、构造点和断层等,应沿线连续观察追索,详细记录和采集样品,观测点的记录要有代表性和控制性。
地层标志层和找矿标志层,应用追踪法定点记录,控制连接。
填图单元划分到组或段,面积大于的第四系土层应圈定边界上图,不专门定点观察描述,但其分布区地质路线经过处,应予以记录;直径大于150m的闭合地质体,长度大于200m,宽度大于1m的线性地质体应有观察点、线控制,圈定上图,重点是断层构造带、裂隙发育带、构造形态的研究。
产状控制点结合附近地形地物,一般采用交会法确定。
地热调查中应系统采取水、气、岩土等样品进行分析鉴定。
具体要求见“地球化学测量”一节。
(二)地温测量
地温测量分为地热井中地温测量与地表浅层地温测量,在地热地质调查中的地温测量为地表浅层地温测量。
其主要目的是用于了解地温场在地下浅层的显示、了解地温场的平面变化及隐伏断裂的构造位置,同时可以综合定性判定断裂的导水导热性质,为地热勘探提供重要的地热信息。
1、主要受断裂构造控制呈带状分布的地热田
(1)首先系统测量工作区不同深度、不同地貌位置机民井的水温。
(2)在此基础上,有针对性的施工深度10—15m的测温浅孔,其测温孔密度能基本控制地温场的变化规律。
测温孔深度应做气温与地温较长时间(一般一昼夜)试验,测温浅孔深度以孔内地温基本不随气温波动为限,垂向观测点距1—,有条件时使用高精度测温仪,分辨率达到—℃,绘制不同深度的地温等值线图。
(3)在有温泉出露的地区,地温测量可作为地热地质调查中的一种主要工作方法,有条件的尽量同时测量汞含量,结合汞量曲线一起绘制剖面曲线图或平面图。
2、层状分布的盆地型地热田
层状分布的盆地型地热田,热储埋藏深度大,部分地区实际测量地温效果往往不好。
但地面调查仍应系统测量不同深度的机民井水温,并系统采取水化学分析样,重点测试与热水有关的化学组分,谋求寻找地热异常区。
三、地热地质调查应注意的主要问题
1、应在已有的区域地质资料和航卫片解译资料基础上进行,实地验证航卫片解译的重点问题,寻找地质露头,观察地热田的地层及岩性特征,地质构造、岩浆活动与新构造运动情况,分析地热勘查区地热形成的地质构造背景。
2、调查勘查区地表热异常分布特征及与构造的关系。
3、调查勘查区温泉出露及分布特征、泉水温度及流量变化特征及开发利用历史,调查勘查区内及其邻区已有地热井水温、水量、开采层段及地层岩性特征,地热水开发利用及动态变化特征。
4、对不同精度、工作目的和不同热储类型的地热地质调查,其工作内容应有所侧重。
4、地热地质调查点的定额,由于各工作区的情况不同,总体宜满足相应比例尺地质调查的定额。
四、提交的资料
1、实际材料图
2、野外记录本及野外手图
3、水井调查卡片
4、测温浅孔柱状图
5、测温记录表
6、水质分析一览表
7、水井调查一览表
8、阶段性成果
(1)地热地质调查工作文字总结
(2)地温等值线图
(3)地质图及构造图,
(4)地热异常分布图。
地热异常分布图应以地质图及构造图为背景,套合地温等值线图、化学组分分布图等与地热有关的其他图件,通过综合分析,圈定工作区地热异常区,指导下步地面物探与钻探工作。
第四节地球化学测量
一、地热地球化学在地热资源勘查中的作用
地热地球化学是研究在地热活动过程中,在地下和地表形成的化学组分和地球化学现象,进而了解地热流体的形成原因和来龙去脉,预测地热资源勘查和开发利用前景。
地热地球化学是地热资勘查必须的手段之一,是地热开发利用时进行环境评价的必要依据。
《地热资源地质勘查规范》(GB/T11615—2010)明确将地球化学勘查列入地热勘查的一种技术手段,我区在地热勘查中运用的比较少,只有个别项目对钻探岩芯做过水热蚀变研究,对地下水进行过相关的化学分析。
二、地热地球化学勘查一些基本方法
目前常用的地热地球化学勘查,常用的有土壤化学成分分析、气体测量、岩芯水热蚀变矿物成分分析、地下水与地热流体化学成分分析等。
1、土壤与岩芯化学成分测量
一般在基岩出露区和基岩浅埋深区进行,用以了解隐伏构造及地下热储情况。
主要是对土壤中砷、汞、锑的探测,一般与氡、汞、氦、二氧化碳等气体同时进行。
有温泉出露的地方要进行泉华与水热蚀变进行取样分析测试。
对地面泉华和钻井岩芯的水热蚀变,采集代表性岩样作岩石化学全分析和等离子体光谱及质谱分析或光谱半定量分析。
采样密度随勘查阶段的深入应加密和增加检测项目。
地热流体向上运移至地表或接近地表处,由于温度、压力下降,热流体中的硅、钙、硫从热流体中析出沉淀,形成硅华、钙华、硫华,这些沉淀物反应了当时热流体在深处的温度。
硅华>150℃
钙华<150℃
硫华>100℃
水热蚀变矿物测试一般在温泉出水口附近、地热钻探岩芯中采取,进行薄片鉴定。
地热流体上升至地表或在热储中和岩石相互作用而形成新的矿物,这些矿物的形成反映了当时地热区的地温状况。
高岭石<150℃
绿泥石150℃
浊沸石100-200℃
怀腊开沸石>200℃
利用蚀变矿物判断该地热区有无勘查前景时,还须对蚀变同位素年龄进行测定,越年轻越有前景。
地热地质现象和化学组分,和挽近期岩浆活动有关,分析岩体,特别是分析岩芯的水热蚀变矿物对地热资源勘查还是有一定意义的。
2、气体测量
一般也在基岩出露区和基岩浅埋深区进行,用以了解隐伏构造及地下热储情况。
气体测量的主要项目有氡、汞、氦、二氧化碳等,这些挥发性气体在地表形成异常,反映地下存在热储,特别观测通过断裂随热水上升到土壤中的氦、汞等气体。
氦与Rn、CO2以及其它气体组合,可进行如下地质判断:
(1)He与Hg、He与As异常,表明地下有高温热储;
(2)He与CO2异常,表明深部有热储存在;
(3)CO2与Rn异常,有断裂带存在;
(4)Rn和Ar异常,表明基岩埋藏较浅。
3、地下水与地热流体化学成分测量
对勘查区的温泉和其他地热显示、已有深井,选择代表性地热流体样品作化学全分析和同位素测试。
在不同水力类型地下水与地热水中取样进行F、SiO2、B等组份的测定,可以帮助确定地热异常分布范围。
选用泉华和地热流体中的某些化学组分、气体成分、同位素建立地热温标,利用地球化学温标来估算热储温度,预测地热田潜力。
具体计算方法见《地热资源地质勘查规范》(GB/T11615—2010)附录A。
测定代表性地热流体,常温带地下水、地表水、大气降水中稳定性同位素和放射性同位素,可以推断地热流体的成因与年龄。
土壤化学成分测量和气体测量在我区目前在地热地质勘查中运用的比较少,还没有成熟的经验,具体采样密度、采样方法可根据实际情况确定。
一般以剖面的方式进行采样,在可能的断裂带附近或明显的地热异常区,应加大采样密度。
地热井、地热异常井、温泉野外调查表格可参照表2—1、2—2。
表2—1地热(异常)井野外调查表
编号
项目名称
坐标
X:
Y:
地理位置
井口高程
m
地面高程
m
地热井类型
矿床规模
井深
m
取水段管径
m
管材类型
开采层段埋深
m
单位降深流体产量
m3/d·m
开采层段范围
m
建井日期
洗井情况
施工单位
所属单位
日开采量
m3/d
日开采热量
J/d
监测起止日期
监测项目
取样情况
摄影编号
主要用途及经济效益
盖层地质年代
盖层岩性
盖层厚度
m
热储地质年代
热储岩性
热储厚度
流体特征
井口温度
℃
气温
℃
水位埋深
m
压力
Pa
测井井内最高温度
℃
测井井底温度
℃
流量
m3/h
热量
J/h
井口地质环境
开发利用状况
调查点平面位置示意图
调查单位
调查人
调查日期
表2—2温泉野外调查表
编号
项目名称
所属地热田编号
泉口高程
m
坐标
X:
Y:
地理位置
泉点名称
图幅编号
泉点类型
矿床规模
泉域面积
km2
水、热来源
取样情况
摄影编号
主要用途及经济效益
盖层地质年代
盖层岩性
盖层厚度
m
热储地质年代
热储岩性
流体特征
泉口温度
℃
气温
℃
压力
Pa
水位埋深
m
流量
m3/h
热量
J/h
泉口地质环境
泉口沉积物
温泉成因
开发利用状况
调查点剖面示意图
调查单位
调查人
调查日期
第五节地球物理勘查
我区在地热勘查常用的地球物理勘查方法主要有大地电磁测深法(包括可控源音频大地电磁测深(CSAMT)和音频大地电磁测深(AMT))及二维地震。
大地电磁测深法与二维地震的具体技术要求见附件一、附件二。
第六节地热钻探
一、地热井类型
按照《地热钻探技术规程》(2011讨论稿),地热井分类如下。
需要指出的是我区目前开展的地热钻探,凡是有开采价值的勘探孔,均为探采结合井,按照生产井的要求进行成井。
表2—3地热井类型
分类
类型
特点及用途
按热储分类
裂隙岩溶型热储地热井(孔)
赋存于基岩裂隙、溶隙中的地下热水。
孔隙型热储地热井(孔)
赋存于新近系、第四系孔隙中的地下热水。
勘探孔(井)
施工中要采取岩土样品、热水样品、蒸汽样品、测量低温和压力、进行产能试验等。