船舶电力推进系统.docx

上传人:b****5 文档编号:7321949 上传时间:2023-01-22 格式:DOCX 页数:12 大小:68.67KB
下载 相关 举报
船舶电力推进系统.docx_第1页
第1页 / 共12页
船舶电力推进系统.docx_第2页
第2页 / 共12页
船舶电力推进系统.docx_第3页
第3页 / 共12页
船舶电力推进系统.docx_第4页
第4页 / 共12页
船舶电力推进系统.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

船舶电力推进系统.docx

《船舶电力推进系统.docx》由会员分享,可在线阅读,更多相关《船舶电力推进系统.docx(12页珍藏版)》请在冰豆网上搜索。

船舶电力推进系统.docx

船舶电力推进系统

船舶电力推进系统

Editedby阳光的CXf

第一章

1.电力推进系统的优缺点

P10

优点:

(1)机动性能好

(2)机舱小,布置灵活可增加船舶的载货载客能力

(3)推进效率高

(4)节能,有利于环保

(5)适合于特种船舶的应用

P47

优点:

(1)通过减少燃料消耗和维护费用减少生命周期成本,尤其是在负载变化大的地方

(2)增强了系统对单一故障的抵抗性,使优化原动机负载分配成为可能

(3)中高速柴油机重量轻

(4)占用空间少,甲板空间利用更加灵活

(5)推进器位置布置更加灵活

(6)更好的机动性

7)更小的推进噪声和震动

缺点:

(1)初始投资增加

(2)原动机和推进器之间有额外的器件,增加了满负荷运行时的损耗

(3)新型设备需要不同的操作,维护策略

2.不同推进方式船舶操纵性能对比

项目

机械推进

常规电力推进

PoD推进

回转直径

120%

100%

75%

零航速回转180度所需时间

118%

100%

41%

全速回转180度所需时间

145%

100%

42%

全速到停止所需时间

280%

100%

42%

零航速至全速所需时间

210%

100%

90%

第二章

3.电力推进系统类型

(1)可控硅整流器+直流电动机。

应用:

船舶推进所应用的直流推进电机的容量,在2〜

3MW之间。

优点:

1)启动电流和启动转矩接近零

2)动态响应快

缺点:

1)转矩控制不精准

2)换向器易发生故障

3)谐波污染较大

4)直流电动机结构复杂,成本高,体积大,维护困难,效率低

(2)交流异步电动机+可调螺距螺旋桨模式。

应用:

这种推进方式只适合于中、小功率船舶,或1000kW以下的侧推装置,因为微软起动器目前还只有中、小功率的低压产品。

优点

1)几乎没有谐波污染

2)转矩稳定没有脉动

3)设计点运行效率高

缺点:

1)启动电流大

2)启动瞬间机械轴承受转矩大

3)功率因数低

4)功率及转矩动态响应慢

5)反转慢,制动距离长

6)变矩桨结构复杂,价格贵,可靠性差

7)变距桨液压控制系统复杂

(3)电流型变频器CSI(CurrentSourceInverter)+交流同步电动机。

应用:

10MW以上容量的电力推进装置

优点:

1)启动电流小

2)价格便宜

3)控制方便,操作灵活

4)能匹配特大功率电机

缺点:

1)时间常数大,动态响应慢

2)电感重量和体积大

3)低速运行时,电流变频器将电流控制在零附近脉动,,输出转矩也脉动,给轴系带来震动

(4)电压型变频器VSI(VoltageSourceInverter)+交流异步电动机。

在中小功率范围,包括部分大功率的电压型变频器中

优点:

1)功率和转矩动态响应快

2)系统电源输出频率范围宽

3)启动平稳

4)功率因数高

5)低速功率损耗小

6)推进效率高

缺点:

1)价格贵

(5)交交变频器+交流同步电动机。

单个电力驱动系统的功率范围在2〜30MW之间。

优点:

1)启动平稳,启动电流逐渐增大

2)功率和转矩动态响应快

3)满负荷时效率高

4)不需要减速齿轮,直接驱动螺旋桨

5)性价比高

直流推进和交流推进对比

(1)直流电动机

优点:

直流电机调速范围宽广平滑,过载启动和制动转矩大,逆转运行特性好,调速简

单。

缺点:

结构复杂,维护困难,存在功率极限和转速极限

(2)交流电动机

优点:

输出功率大,极限转速高,结构简单,成本低,体积小,运行可靠。

第三章

4.电力推进系统的组成

(1)发电系统

(2)配电系统

(3)变频系统

(4)推进器单元

5.电力推进系统的组件

(1)电站组件

(2)配电板组件

(3)变压器组件

(4)谐波抑制器

(5)变频器组件

(6)检测控制组件

(7)电动机组件

(8)螺旋桨

第四章

6.变频器性能比较

间接变频器(交-直-交)

直接变频器(交-交)

换能形式

两次换能,效率略低

一次换能,效率较咼

换流形式

强迫换流或负载换流

电源电压换流

元件数量

较少,利用效率较咼

较多,利用效率较低

调频范围

宽广、O-几倍电源频率

较小、0-1/3或1/2电源频率

功率因数

较咼、>0.94

较低、<0.7

7.电压型/电流型变频器共同点,不同点

共同点是都由整流和逆变两部分组成

不同点是电压型用电容缓冲无功功率,电流型用电感

第五章

8.表格分析

表4丰要电力推进海T册的擁进装宵规梢

JVI⅛

瓷胆

JIJ^

⅛⅛+λw

«4«A

Il

Alilh99L

ZMl

FFF

SX4ΘW

i⅛∣L∣∕∙∙12F

ABB

ZW

FFP

匕推

3XSCOO

⅛⅜Λ⅛lkJl⅛3iF

b⅛⅛

3

Λi⅛Ξ01

ZHr

FFP

tJFtE惟

2×4WO

瓷誓电-in24F

ABB

MIlllIr2∏.

FPP

DP

SXSliMJ

⅛t

ABB

GOea3ucθ≡>

2⅛

FFP

2x⅛o00

⅛ι⅛'L∙ittUP

AEB

41Ψ⅛Z秤

FFF

Dr

4X2200

⅛⅛⅛⅛∣r∙^24F

ABB

飙虞

CPP

DFZMt

2xlWB

軾橱厲

ABB

⅛JtJtt

ZHl

CPP

LtC

≡xl&00

Λf]f

WittA

£PP

≡×50(X∣

ZMl

FFF

OF.'匕椎

2X4⅛W

-!

∙M∣lL∙∙⅛24Γ

ABB

町忡毛!

Z抽

FPP

DF

2X2OM

ABB

KiHΛ

FFF

DrfDiI推

L×2OM

空握ILn席24P

ABB

t⅛∣J

M1>

FPP

W

ix⅛ι<⅛

⅛WiWti

亀「厅

⅛⅛EA

FlT

DfbmIf

2χ>ω

空⅛j单M∙T

KnT

S

⅛⅛Λ

FPP

DPMk

2x⅛SW

MIlli■FuP

ABB

V<Λ

ITP

WM

]冥"游

膏娜和SiUP

ABB

HΛΛ

FPP

[»/

2X2000

l√*i山PUP

ABB

J--MlA

FPP

t»L3∣l

2X⅞<00

工换LL2J?

∣CcnvEΓbeBJUi

•Jl巾:

1临M-

FFP

DP

JXJW

CO∏⅜⅝1⅝4h

FPP

DPJlt

2X2(W

⅛ftt'∣L∣-κ⅛24P

CcIlvat⅛Mii

曜ΛΛ

FPP

IXJW

⅛W!

'J∣⅛⅛P

CgnVcr⅞4∣ι

10

√J⅛-r20

⅛⅛A

CPp

匕推

2X4SW

珈⅛J■型KP

AtlT

WwU推

CW

IXMoo

「曲慎關帑

■门于

⅛⅛TA

CPP

IU框

IXI^

时(

(1)所用推进器类型五花八门

(2)大部分采用FPP,少部分采用CPP

(3)最大单机功率小于等于550OkW

(4)驱动形式多样,以虚拟24P最多

9.中压电力系统

当电站超过10MW,采用中压发电机

一般可按所有发电机电流之和乘上8倍估得在不同电压等级下的短路容量

中压电力系统绝大多数采用中性点高电阻接地方式

电压等级越高,系统功率越大

10.中压变压器

(1)推进移相变压器:

常用厶/△+Y接线

(2)作业机械移相变压器/降压变压器:

(3)日用负载降压变压器:

一般采用厶/△接线;

(4)有些变压器的容量可能很大,甚至接近或超过单台发电机的容量;

(5)大容量变压器接通时的冲击电流会造成发电机过流脱扣或过大的电压跌落,一般用预充磁的方式来降低其冲击电流;

11.电力系统图分析

MLItPmT⅛S⅛KIJPPrXItV⅛SSE∣

L)Ie«1⅛leclr∣cΛrt∏asp<^]FPPr(MXHhOL呦M∙c*ρuxl

OOQO

OQoQ

-*β∕

^-DDOo

2925⅛⅛10ΓJ⅛rη

<⅛⅛0⅛

BOMfStem

120□kW3Q0kW

].JJkVSOHz

SLJPPLYSHlPOIfeeldteac∣driven

FIF)

Gemi

GVar⅛

Oooo

QOQO

CddO

OOOO

3o

i⅜BJ>n曲IwQ⅛⅛⅛5由Wl⅛fi*RCId第

 

第七章

12.中压配电板

(1)以分割封闭的结构组成断路器室、母线室、电缆室和低压室而构成标准的每屏结

构;

(2)每屏只装一台断路器馈电一个用户

13.动力定位/动力定位船舶/动力定位系统

动力定位(DynamicPoSitioning,简称DP)是船舶或海上平台不借助于锚泊系统的作用,利用计算机进行复杂的实时计算,对船舶各主副推力器的推力进行分配,控制船舶推进螺旋

桨和推力器产生适当的推力与力矩,以抵消海洋扰动力和力矩,减少船舶的横荡、纵荡和

艏向角,保持船舶在海面某一位置的控制技术。

动力定位船舶是指该船舶或装置可以自动保持自己的位置,也就是通过推进器施加的力。

保持固定的位置或沿着预先设定的移动轨线移动。

动力定位系统是指对动力定位一条船舶所必须的全部装置.包括动力源系统、推进器系统、

DP控制系统。

14.缩写汇总

UPS:

UninterruptiblePowerSUPPly不间断电源

DP:

DynamicPOSitiOning动力定位

IMO:

InternationalMaritimeOrganizatiOn国际海事组织

DNV:

DETNoRSKEVERITAS挪威船级社

NMD:

NOrWegianMaritimeDireCtOrate挪威海事局

ROV:

RemOteOPeratedVeSSeIS遥控运动体

OSV:

OffShOreSUPPOrtVeSSeI多任务近海支援船

PSV:

platformSUPPIyVeSSeI平台供应船

FPP:

fixedPitChpropeller定距桨

CPP:

ControllablePitChpropeller变距桨

SCR:

siliconControlledrectifier可控硅整流器

MEPS:

marineelectricpropulsiOnSyStem船舶电力推进系统

DOL:

directOnline交流异步电动机+可调螺距螺旋桨模式

CSI:

CUrrentSOUrCeInVerter电流型变频器

VSI:

voltageSOUrCeInVerter电压型变频器

POddedpropeller吊舱式推进器

15.动力定位系统

原理框图

四个部分:

(1)测量系统

(2)控制系统

(3)推力系统

(4)动力系统

结构框图

16.控制应用领域

(1)定点控制

水面船舶的定点控位包括纵向、横向、摇舷三个自由度的定位控制,通过控制器的

解算,发出控制指令使船舶在各自由度上保持在设定点附近。

(2)航迹控制

船舶复杂作业或航行过程中,往往需要沿着一条预定轨迹前进。

典型的应用是海洋

考察的区域目标搜索。

航迹控制需要人或上层控制机给定轨迹指令及速度指令,由

动力定位系统来控制船舶沿预定的轨迹前进,直到终点,在此过程中船的舶向允许

控制系统根据航行过程中的海洋环境的变化自行调整。

(3)循线控制

循线控制的功能与航迹控制的功能很相像,其主要差别在于动力定位系统控制船舶

沿预定的路线前进时,必须保持船舶的艏向与预定轨迹的航迹方向一致,不允许自

行调整船舶的艏向。

典型的应用是石油管线的铺设和检修。

(4)跟踪控制

跟踪控制主要用于自动目标跟踪,始终让被控船与目标保持固定的空间位置关系。

般用于RoV(RemoteOPeratedVeSSelS工作母船,它能时刻跟踪作业潜器的运动。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 理学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1