换热网络设计.docx

上传人:b****5 文档编号:7241556 上传时间:2023-01-22 格式:DOCX 页数:6 大小:20.20KB
下载 相关 举报
换热网络设计.docx_第1页
第1页 / 共6页
换热网络设计.docx_第2页
第2页 / 共6页
换热网络设计.docx_第3页
第3页 / 共6页
换热网络设计.docx_第4页
第4页 / 共6页
换热网络设计.docx_第5页
第5页 / 共6页
点击查看更多>>
下载资源
资源描述

换热网络设计.docx

《换热网络设计.docx》由会员分享,可在线阅读,更多相关《换热网络设计.docx(6页珍藏版)》请在冰豆网上搜索。

换热网络设计.docx

换热网络设计

一.简介:

化学工业是耗能大户,在现代化学工业生产过程中,能量的回收及再利用有着极其重要的作用。

换热的目的不仅是为了改变物流温度使其满足工艺要求,而且也是为了回收过程余热,减少公用工程消耗。

在许多生产装置中,常常是一些物流需要加热,而另一些物流则需要冷却。

将这些物流合理的匹配在一起,充分利用热物流去加热冷物流,提高系统的热回收能力,尽可能减少蒸汽和冷却水等辅助加热和冷却用的公用工程(即能量)耗量,可以提高系统的能量利用率和经济性。

换热网络系统综合就是在满足把每个物流由初始温度达到制定的目标温度的前提下,设计具有最加热回收效果和设备投资费用的换热器网络。

我们主要介绍利用夹点技术对换热网络进行优化。

通过温度分区及问题表求出夹点及最小公用工程消耗,找出换热网络的薄弱环节提出优化建议,寻求最优的匹配方法。

再从经济利益上进行权衡提出最佳的换热网络方案。

提高能量的利用效率。

二.换热网络的合成——夹点技术

1、温度区间的划分

工程设计计算中,为了保证传热速率,通常要求冷、热物流之间的温差必须大于一定的数值,这个温差称作最小允许温差△Tmin。

热物流的起始温度与目标温度减去最小允许温差△Tmin,然后与冷物流的起始、目标温度一起按从大到小顺序排列,生称n个温度区间,分别用T1,T2……Tn+1表示,从而生成n个温区,冷、热物流按各自的始温、终温落入相应的温度区间。

温度区间具有以下特性:

(1).可以把热量从高温区间内的任何一股热物流,传给低温区间内的任何一股冷物流。

(2).热量不能从低温区间的热物流向高温区间的冷物流传递。

2、最小公用工程消耗

(1).问题表的计算步骤如下:

A:

确定温区端点温度T1,T2,………Tn+1,将原问题划分为n个温度区间。

B:

对每个温区进行流股焓平衡,以确定热量净需求量:

Di=Ii-Qi=(Ti-Ti+1)(∑FCPC-∑FCPH)

C:

设第一个温区从外界输入热量I1为零,则该温区的热量输出Q1为:

Q1=I1-D1=-D1根据温区之间热量传递特性,并假定各温区间与外界不发生热交换,则有:

Ii+1=Qi

Qi+1=Ii+1-Di+1=Qi-Di+1

利用上述关系计算得到的结果列入问题表

(2).夹点的概念(自己画图7-3)

从图中可以直观的看到温区之间的热量流动关系和所需最小公用工程用量,其中SN2和SN3间的热量流动为0,表示无热量从SN2流向SN3。

这个流量为零的点就称为夹点。

3、温焓图与组合曲线

对于同一个温度区间的冷物流或热物流,由于温差相同,只需将冷物流、热物流的热容流率分别相加再乘上温差,就能得到冷物流或热物流的总热量。

因为

△H=∑Qi=(T终-T初)∑FCpi

所以冷物流或热物流的热量与温差关系可以用T—H图上的一条曲线表示,称之为组合曲线。

T—H图上的焓值是相对的。

为了在图上标出焓值,需要为冷物流和热物流规定基准点。

步骤如下:

(1)对于热物流,取所有热物流中最低温度T,设在T时的H=H,以此作为焓基准点。

从T开始想高温区移动,计算每一个温区的积累焓,用积累焓对T作图,得到热物流组合曲线。

(2)对于冷物流,取所有冷物流中最低温度T,设在T时的H=H,(HCO)以此作为焓基准点。

从T开始想高温区移动,计算每一个温区的积累焓,用积累焓对T作图,得到冷物流组合曲线。

结论:

1.过程物流热复合可以减少整个换热过程的热力学限制数;

2.经过热复合后只剩下一个热力学限制点,即夹点,此时,过程需要的公用工程用量可以达到最小。

4、夹点特性

(1)夹点的能量特性

夹点限制了能量得进一步回收,它表明了换热网络消耗得公用工程用量已达到最小状态。

可以说,求解能量最优的过程就是寻找夹点的过程。

(2)夹点的位置特性

夹点位置和最小公用工程消耗量可采用图解法(T-H图)或问题表格算法(ProblemTableAlgorithm)来确定。

夹点把换热网络分隔成夹点上方(热阱)及夹点下方(热源)两个独立的子系统,而夹点处是设计工作中约束最多的地方(即“瓶颈”)。

夹点以上的热股流于夹点以下的冷股流的匹配(热量穿过夹点),将导致公用工程用量的增加。

这一事实可以分别通过对夹点之上和夹点之下子系统进行焓平衡得到。

为了使公用工程消耗最小,设计时需遵循以下三个基本原则:

1、避免夹点之上热股流于夹点之下冷股流间的匹配;

2、夹点之上禁用冷却器

3、夹点之下禁用加热器

(3)夹点的传热特性

夹点是整个换热网络传热推动力△Tmin最小的点,所以在夹点附近从夹点向两端得△T是增加的。

这是由于在夹点一侧,流入夹点流股的热容流率之和,总是小于或等于流出夹点流股的热容流率之和,即有下式成立:

∑CP流出≥∑CP流入

对没有流入夹点的流股我们称之为从夹点进入的流股,其余流股为通过夹点的流股。

很明显,要满足上式则必须要有从夹点进入的流股,这样才能增加流出夹点流股的热容流率之和。

反之,由于流股消失而产生的角点绝不会成为夹点。

由此可以得出推论对任意一条组合曲线而言,流入夹点的流股数应小于或等于流出夹点的流股数,即:

N流出≥N流入

三、夹点法设计能量最优的换热网络

1、匹配的可行性原则

(1)总物流数的可行性原则

某些过程流通过加点是,为了达到夹点温度,必须利用匹配进行换热。

夹点之上使用外部冷却器会使总公用工程消耗增大,从而达不到能量最优的目的。

利用流股分割可以避免夹点之上使用冷却器。

也就是说为了保证能量最优、避免夹点之上使用冷却器,夹点之上的物流数应满足下式:

NH≤NC

式中NH----热流股数或分支数

NC----冷流股数或分支数

相反,为了避免在夹点之下使用加热器,以保证能量最优,夹点之下物流数应满足下式:

NH≥NC

上述两式合并后可得(夹点一侧):

N流出≥N流

若上式不满足,则必须对流出夹点的流股作分割。

(2)、热容流率可行性原则

为了保证传热推动力△T≥△Tmin,每个夹点匹配热容流率要满足:

夹点之上:

FCPH≤FCPC

夹点之下:

FCPH≥FCPC

式中FCPH---热流股的热容流率

FCPC---冷流股的热容流率

合并上述两式,可得:

FCP流出≥FCP流入

如果流股间的各种匹配组合不能满足上式,则需利用股流分割来改变流股的FCP值。

(此式只适用于夹点匹配。

非夹点匹配时温差较大,对匹配的限制不象夹点处那样苛刻。

2、流股的分割——FCP表

根据夹点匹配原则,可以得到夹点之上和夹点之下物流匹配的步骤,由下图可知当夹点之上或夹点之下的物流不满足条件时,需要对物流进行分割。

采用Linnhoff提出FCP表来分割物流,FCP表就是把夹点之上或夹点之下的冷热物流的热容流率,按照数值的大小分别排成两列列入FCP表,将可行性判锯列与表头。

每个FCp值代表一个流股,那些必须参加匹配的FCp值用方框圈起(如夹点之上的每个热流股必须参加匹配)。

夹点匹配表现为一对冷、热物流股FCp值的结合,分割后的流股热容流率写在原流股的热容流率旁边。

如果热流率股数大于冷流股数,则冷流股的分割在最终设计中是可以省略的。

需要强调指出的是,FCP表只能帮助我们识别分割的流股,而并不代表最终设计中分割流股的分流值(即分支的FCP值)。

3、流股的匹配——勾销推断法

通过FCP表,确定了夹点处可分割流股的对象流股。

在具体安排匹配时,必须尽量减少换热单元数。

不能直接按FCP表中的FCP值进行分流和匹配,勾销推断法是以最小换热单元数Umin为目标进行匹配的直观推断法则,它可以指导我们进行流股的匹配。

该法则表述为:

如果每个匹配均可使其中的一个流股达到其目标温度或达到最小公用工程的要求,那么流股在以后的设计中不必再考虑,可以勾销。

夹点匹配通常可选择匹配热负荷等于两股匹配物流流股中负荷小的热负荷,从而可使该流股在匹配中被勾销。

根据上述夹点特性及设计基本原则夹点设计的要点可归纳如下:

1)给定一初始最小允许传热温差△Tmin,确定夹点位置;

2)在夹点处把网络分隔开,形成的两个独立系统(热端和冷端)分别处理;

3)对每个子系统,设计先从夹点开始进行,采用夹点匹配可行性规则及经验规则,选择匹配物流,决定物流是否需要分支;

4)离开夹点后,约束条件减少,选择匹配物流自由度较大,允许设计者更灵活地原则换热方案。

这时可采用经验规则,但在传热温差约束仍较紧张的场合(即某处传热温差比允许的△Tmin大不了多少的情况),仍需遵循可行性原则;

5)设计时需要考虑系统的可操作性、安全性及生产工艺中有无特殊规定;

四、换热网络的调优

对于一个最大能量回收的初始网络进行调优的目的,就是使其中所含的换热设备数降致或接近最低,以减少设备投资,但这常常会引起操作费用增加,因此必须对最大能量回收的公用工程费用与设备费用进行权衡。

1.最小换热单元数

最小换热单元数为两个子网络的最小换热单元数之和,即:

UE,min=(NH+NC-1)夹点上+(NH+NC-1)夹点下

从上式可以知道:

(1)若夹点之上无热物流,且夹点以下无冷物流,则

UE,min=NH+NC-2<Umin

(2)若夹点在换热网络的一端,即不存在夹点以下或夹点以下部分,则UE,min=Umin

(3)当夹点上、下同时存在冷、热流股时,有UE,min>Umin

即换热网络不能同时达到能量最优和换热单元数最小时.能量最优可保证操作费用最低,单元数最少可使设备费用最低,因而存在着操作费用和设备费用之间的权衡。

夹点设计法得到的结构处于最小公用工程状态,而勾销推断法基本可以保证两个子系统中换热单元数最少。

当两个子系统组合成原系统时引起了换热单元数的过剩。

2.能量与设备数的权衡

Linnhoff证明了一条重要的结论:

热回收网络实际换热单元数比最少换热单元数每多出一个单元,都对应着一个独立的热负荷回路。

热负荷可以沿负荷回路进行“加”、“减”、“加”、“减”……的迁移,而不改变回路的热平衡。

对于夹点问题,不管△Tmin为何值,总是即需要加热器又需要冷却器。

为了满足系统最小换热设备数的要求,往往需要跨越夹点传热,这会使公用工程费用增加,此时可以找出一个跨越夹点的最佳换热量x,从而使总费用达到最小。

可以用“能量松驰法”来恢复最小传热温度。

所谓“能量松弛法”,就是把换热网络从最大能量回收的紧张状态“松弛”下来。

通过调整参数,使能量回收减少,公用工程消耗加大,从而使传热温差加大(在T——H图上表现为冷、热组合曲线拉开距离)。

为此,要在打开回路的基础上找到一个热负荷通路,使外部加热器与外部冷却器通过违反温差的匹配而相互连通。

因此,对于已满足最小公用工程消耗的换热网络,如果换热单元数不是最少,可以采用以下步骤进行调整:

1.找出独立的热负荷回路;

2.沿热负荷回路增加或减少热负荷来断开回路;

3.检查合并后的换热单元是否违反最小传热温差△Tmin;

4.若违反△Tmin,则利用能量松弛法求最小能量松弛量,恢复△Tmin。

在实际设计中,对于合并的回路是否一定要进行能量松弛来恢复最小传热温差,取决于合并后换热单元数的传热温差值是否可行。

3.△Tmin的选择

到目前为止,一个最大能量回收的初始网络进行调优的目的,就是使其所含的换热设备数降至或接近最少,以减少设备投资,但这常会引起操作费用的增加。

因此须对最大能量回收的公用工程费用与设备投资费用进行权衡。

设备费用、公用工程费用与传热推动力的关系对于夹点问题,不管△Tmin为何值,总是既需加热器又需冷却器。

由图2可见,随着△Tmin的增大,换热器的热负荷减小,可使设备投资费用降低,但公用工程费用增加。

显然存在一个最佳的△Tmin,此时总费用最小。

目前还没有直接方法能够精确地确定最佳,因为设备费用与△Tmin的关系无法用函数直接描述,但是如果换热系统的传热系数变化不大,就可以利用下面的方法计算△Tmin的近似值。

先设定一个任意的最小温差△Tmin,计算最小公用工程消耗量然后计算换热面积。

由于系统传热系数变化不大,因此可以为系统取一个平均传热系数U,然后根据组合曲线的角点分割曲线,假设各部分中冷、热物流逆流换热,然后按公式Q=UA△TLM来计算每个部分的换热面积,将各个部分的换热面积加和,得到整个系统设备换热面积。

将此费用与最小公用工程费用综合起来,就得到系统的总费

用。

用这种方法尝试几次,可得到△Tmin的近似值。

综上所述,一个完整的换热网络设计过程可以归纳为以下几步:

(1)根据经验选取最小端点温差△Tmin;

(2)根据夹点技术,涉及能量利用最优的换热网络;

(3)在能量利用最优的基础上,设计换热单元数最少的换热网络;

(4)调整△Tmin,设计总投资费用最少的换热网络。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 其它模板

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1