精华浅谈盾构机姿态的控制方法5.docx

上传人:b****0 文档编号:711905 上传时间:2022-10-12 格式:DOCX 页数:12 大小:69.87KB
下载 相关 举报
精华浅谈盾构机姿态的控制方法5.docx_第1页
第1页 / 共12页
精华浅谈盾构机姿态的控制方法5.docx_第2页
第2页 / 共12页
精华浅谈盾构机姿态的控制方法5.docx_第3页
第3页 / 共12页
精华浅谈盾构机姿态的控制方法5.docx_第4页
第4页 / 共12页
精华浅谈盾构机姿态的控制方法5.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

精华浅谈盾构机姿态的控制方法5.docx

《精华浅谈盾构机姿态的控制方法5.docx》由会员分享,可在线阅读,更多相关《精华浅谈盾构机姿态的控制方法5.docx(12页珍藏版)》请在冰豆网上搜索。

精华浅谈盾构机姿态的控制方法5.docx

精华浅谈盾构机姿态的控制方法5

土压平衡盾构机困难状况下的操纵及纠偏

摘要:

为了能使操纵手更熟练的操纵盾构机,本文根据自身工作实践对盾构困难状况下操纵及纠偏的理解与广大技术工作者探讨。

关键字:

轴线;纠偏;趋势

1前言

盾构机是一种很笨重的机具,操纵及纠偏是受很多技术参数制约的,怎样合理地把这些参数科学的统一起来,是影响盾构机操纵及纠偏的关键,下面就这些参数的调节及注意事项通过具体情况进行阐述。

2盾构操纵及各影响参数

2.1推力对掘进的影响

⑴如果推进过程中出现一侧推力比另一侧推力大,但推进油缸的行程显示却是推力小的一侧变化快,这种现象多出现在小半径施工,增加推力,使得压差变大,以满足转弯的需要,用降低掘进速度的办法来保证掘进的连续性,同时也避免刀盘被卡死。

⑵管片拼装的好坏会影响推进油缸的有效推力,所以要充分挖掘盾构机的有效推力,要避免不必要的推力损失,这也解释了为什么有时加大推力而速度依然无法获得提升。

2.2铰接对掘进的影响

在纠偏过程中一侧的铰接拉得太长是件很头痛的事情,收铰接会加大不利的趋势,严重时这环的纠偏可能前功尽弃,一定要做到收铰接时间不可太长,压力不要太高,尽量把趋势从正值纠到负值(或负值到正值),并使之过2个趋势点再收铰接,这样就会把姿态调到了有利的一侧,这时收铰接才会对姿态纠偏起到事半功倍的效果。

2.3速度对掘进的影响

⑴如果掌子面裂隙水丰富,或是在通过含水丰富地层时,要全速前进,在出土量有保证的前提下,尽可能提高掘进速度,这样做的好处是快速通过含水层,避免过多的水涌出。

⑵在掘进过程中脱顶现象是时有发生的事情,可通过增大速度的方法把脱顶的油缸伸出来,以达到所有推进油缸都顶在管片上,一次不行,可多次重复此方法,一定会见效的。

这种情况多出现速度不是很快,扭距忽大忽小的硬岩状况中。

速度不宜过快也不宜过慢,更不要走走停停,可以在扭距大的情况下减小速度达到减小扭距的办法,不要停机等扭距降下来在掘进。

2.4刀盘转速及扭距对掘进的影响

刀盘的转速要满足的条件便是与掌子面的充分切削,基本操作原则是黏土层用低转速,硬岩用高转速,同时注意推力的调整,以提高或降低刀盘对土体的惯入度。

扭距不可太大,超过200bar不但应该提高泡沫剂等的用量,也要通过降低掘进速度的措施,来保证刀具不被严重磨损。

3盾构纠偏

3.1管片点位的选择对纠偏的影响

根据盾构机的走向,即满足的关键点为管片的轴线要与盾构机的轴线重合,在考虑纠偏调整的时候应考虑几点注意事项,首先要根据推进油缸的行程分析,封顶块要拼装在行程最短的一侧,其次要看盾构机的姿态,例如盾构机向右,而右侧的行程又最大,那就得要看第三个考虑的因素--铰接,这个因素也是最容易让人忽略的一个,如果右侧铰接最小,那么拼装时所要优先考虑的是拼装在行程最短处的两侧,使得管片有向右的趋势,减小管片与盾构机轴线之间的夹角,如果左侧的铰接最小,那么拼在行程最短处也是可以的,因为盾构机已经有向左的趋势了。

当盾构机转弯方向与姿态方向相反时,如果趋势过大,超过±8,从施工过程来看,急纠的危害是巨大的,如果从开始就调大推力压差,产生的结果是后点还是向外侧偏移,掘进过程中发现初始阶段大概推进400mm的时候,把压差调得适当,即保证的状态为维持前后点,使得后点有向内侧移动的趋势,然后再调大压差,就会容易使前点向外侧移动,顺利完成纠偏,同时这样也避免了过多的超挖。

3.2盾构机的纠偏

实践发现,如果水平纠偏,最好先把垂直姿态稳住,再水平纠偏,也就是说要一个方向纠完,再纠另一方向,而实际的情况多是水平、垂直同时出现的,同时纠偏效果不是很好,有的时候,会出现推进压差不够的情况,另外最容易出现的问题就是脱顶,如果一侧脱顶严重的话,将有可能把管片拉开,这对防水及下一环的拼装都会产生不利的影响。

3.2.1盾构机纠偏的方法

⑴小摆头、大摆尾。

这种情况的要求下,盾构机的姿态变化轨迹是以前点后侧为基准点,后点进行扇型展开,这种情况下对掘进速度是有一定影响的,同时对下一环的掘进也将产生不利的影响,如果盾尾处的间隙很小,当掘进时受力不均等因素存在就会对管片产生扭动,不仅仅降低了推进油缸的有效推力,同时还会加大管片间的内力使得管片损坏或管片严重错台。

⑵大摆头、小摆尾。

这种情况就是,前点变化明显,使得一侧的土严重超挖,并使土的内聚力增加,另一侧出现很大空隙,而这个空隙暂时是无法添充的,当盾构机停止掘进时,由于一侧的内力释放,就会使得前点向另一侧偏移,这就是为什么再次掘进时姿态会出现偏移的原因。

这两种纠偏方式都各有其优缺点,在掘进过程中似具体情况灵活运用,利用其它参数的使用找到二者平衡点,但要保证的是尽量使盾构机减少对土体的扰动。

4结语

以上对盾构施工中困难状况的分析,来避免增加不必要的操纵难度,提高盾构掘进速度及掘进质量,为类似情况的发生对技术工作者提供借鉴及思考。

盾构姿态控制作业指导书

1适用范围

本作业指导书适用于盾构姿态的控制。

2作业准备

即盾构正常掘进作业准备。

3技术要求

地铁隧道在任何贯通面上的贯通中误差,横向不超过±50mm,高程不超过±50mm。

4施工程序与工艺流程

a)对盾构现状位置测量,报出盾构现状表;

b)分析盾构趋势与原因;

c)确定下环推进的纠偏措施、方案等具体方法;

d)进行纠偏。

5施工要求

盾构操作,主要是使盾构运动轨迹始终在设计轴线容许偏差值范围内,达到隧道衬砌拼装在理想的位置上的目的。

要控制好盾构掘进轴线,不但要能熟练地操作盾构,懂得纠偏原理、方法,还应对隧道埋置的地质情况、盾构施工时土质与盾构相互的影响有全面的了解。

5.1土质对盾构施工的影响

盾构法适用于软土层的施工。

软土主要有砂性土和粘性土两类,砂性士有砂土、粉质砂土、粉土;粘性土有粘土、粉质粘土、淤泥质粘土等。

砂性土的颗粒粒径在2~0.005之间,其透水性较好,在地下水压力差作用下(动水压力),砂粒易产生流动,如不采取必须的防范措施是难以正常施工的。

粘性土的透水性差,但具有较大的可塑性。

虽是最适宜盾构施工的土质,但施工时对土体有过大扰动,则带来的“后患”也大。

在饱和的淤泥质粘土中施工,对盾构稳定控制有一定的难度,要严格掌握进土量,才能使盾构稳定向前运动。

5.2盾构的操作方法

5.2.1千斤顶编组

盾构在土层中向前受到土的阻力,需借用布置在切口环四周的千斤顶顶力来克服。

但两者的合力位置始终不在一条直线上,从而形成一力偶,导致盾构偏向。

如下图所示:

为使其千斤顶合力位置与外力合力位置组成一个有利于纠偏的力偶,故调整不同千斤顶的编组可调整盾构的纵被,从而调整其高程位置及平面位置。

在用千斤顶编组施工时应注意:

a)千斤顶的只数应尽量多,以减少对已完成隧道管片的施工应力;

b)管片纵缝处的骑缝千斤顶一定要用,以保证成环管片的环面平整;

c)纠偏数值不得超过操作规程的规定值。

5.2.2千斤顶区域油压调整

目前多数盾构将千斤顶分为上、下、左、右四个区域,每一区域为一个油压系统。

通过区域油压调整,起到调整千斤顶合力位置的作用,使其合力与作用于盾构上阻力的合力形成一个有利于控制盾构轴线的力偶。

5.2.3盾构的纵坡控制

纵坡控制的目的,即调整盾构离程,还可调整盾构与已成管片端面间的间隙,以减少下一环拼装施工的困难。

控制纵坡的方法:

a)变坡法

在每一环推进施工中,用不同的盾构推进坡度进行施工,最终达到预先指定的纵坡。

在变坡法推进中,可根据管片与盾构相对位置(以盾构不卡管片为原则),采用先抬后压或先压后抬的措施;也可用逐渐增坡或减坡的方法。

b)稳坡法

盾构每推一环用一个纵坡,以符合纠坡要求。

但要做到稳坡,具有相当高的技术难度,用这方法,盾构在推进中对地层扰动最小。

5.2.4调整开挖面阻力

当利用盾构千斤顶编组或区域油压调整无法达到纠偏目的时,可采用调整开挖面阻力,也就是人为地改变阻力的合力位置,从而得到一个理想的纠偏力偶,来达到控制盾构轴线的目的。

用这种方法,纠偏效果是较好的,但各种不同的盾构形式,有不同的方法。

敞开式挖土盾构可采用超挖;挤压式盾构可调整其进土孔位置和扩大进土孔。

以往也设想使用过在盾壳内外伸出鳍板,但效果不大。

5.3盾构偏向的判定

偏向是指平面、高程偏离设计轴线的数值超过允许范围。

5.3.1盾构偏向的原因

盾构脱离基座导轨,进入地层后,主要依靠千斤顶编组及借助辅助措施来控制盾构的运动轨迹。

盾构在地层中推进时,导致偏向的因素很多,主要有:

a)地质条件的因素

由于地层土质不均匀,以及地层有卵石或其他障碍物,造成正面及四周的阻力不一致,而导致盾构在推进中偏向。

b)机械设备的因素

各千斤顶工作不同步,由于加工精度误差造成伸出阻力不一致,另外,盾构外壳形状误差、设备在盾构内安置偏重于某一侧,千斤顶安装后轴线不平行等,也会导致盾构偏向。

c)施工操作的因素

如部分千斤顶使用频率过高,导致衬砌环缝的防水材料压密量不一致,累积后使推进后座面不正,挤压式盾构推进时有明显上浮;盾构下部土体如有过量流失,引起盾构下沉;管片拼装质量不佳、环面不平整等都会导致盾构推进偏向。

5.3.2盾构偏向的反映与测定

在盾构施工中的每一环推进前,先要充分了解盾构所处的位置和姿态,否则无法控制下一环推进轴线和制定纠偏措施。

目前施工技术手段是通过对盾构现状位置的测量后报出的盾构现状报表来反映盾构真实状态。

从该报表(见下图)中可得知如下值:

a)盾构切口、举重臂、盾尾三个中心的平面与高程的偏离设计轴线值。

从这些值中可以分析盾构上下左右的趋势,以确定下环推进的纠偏措施、方案等。

b)盾构的自转角。

从这一数值可以了解盾构目前是处于顺时针还是逆时针旋转,从而决定刀盘的转向或附加配重。

c)目前隧道的里程、环数。

d)盾构的纵坡。

在报表中高程的向上偏离设计值时用“+”表示,向下用“-”表示;平面偏右用“+”表示,偏左用“-”表示;上坡用“+”表示,下坡用“-”表示。

5.3.3具体测量方法

目前对盾构现状测量大多还是依靠于每环推进中或结束后,由人工进行测量。

这种方法不能使施工人员随时于解盾构的现状,当今最先进的测量手段是利用陀螺仪等高精尖技术,但目前国内主要还是应用以下的常规测量手段。

a)坡度板是目前盾构施工中能使施工人员直接读出盾构纵坡、转角的值,以便能随时纠正的量具。

测纵坡及转角以往还用过的有带水准气泡的水平仪、连通管等。

b)丈量两腰千斤顶活塞杆伸出长度估计平面纠偏效果。

c)用水准仪测得盾构轴线两点,可算出盾构纵坡及高程偏差值。

d)用激光经纬仪直接读出激光打在盾构前、后靶上读数,可算出盾构的切口、举重臂、盾尾三个中心平面与高程偏离设计轴线值。

5.4盾构自转的纠正

盾构在推进施工中,除了偏离设计轴线外,还有盾构本身自转的现象。

5.4.1盾构自转后对施工带来的困难

a)使盾构设备操作、液压系统的运转不正常。

原来安置平整的设备自转后成歪斜,如不调整,对操作不方便,运转使用失常。

b)使隧道衬砌拼装困难。

这是指在采用全纵向插入的成环形式,因位置转了角度,造成封顶块管片难以或根本无法拼装。

c)给隧道测量带来不便。

测量在盾构上安装有弧形尺,盾构自转后尺位偏了,有时要重新装尺,两次定位肯定要影响到测量精度。

5.4.2盾构产生自转的原因

a)土质不均匀,盾构两侧的土体有明显差别,则土体对盾构的侧向阻力不一,从而引起旋转。

b)在施工中为了纠正轴线,对某一处超挖过量,造成盾构两侧阻力不一而使盾构旋转,同样,安装在盾构上大的旋转设备顺着一个方向使用过多,也会引起盾构自转。

c)由于盾构制作误差、千斤顶位置与轴线不平行、盾壳不圆、盾壳的重心不在轴线上等,使盾构在施工中

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 职业规划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1