自动控制原理实验汇总.docx

上传人:b****5 文档编号:7098324 上传时间:2023-01-17 格式:DOCX 页数:38 大小:577.78KB
下载 相关 举报
自动控制原理实验汇总.docx_第1页
第1页 / 共38页
自动控制原理实验汇总.docx_第2页
第2页 / 共38页
自动控制原理实验汇总.docx_第3页
第3页 / 共38页
自动控制原理实验汇总.docx_第4页
第4页 / 共38页
自动控制原理实验汇总.docx_第5页
第5页 / 共38页
点击查看更多>>
下载资源
资源描述

自动控制原理实验汇总.docx

《自动控制原理实验汇总.docx》由会员分享,可在线阅读,更多相关《自动控制原理实验汇总.docx(38页珍藏版)》请在冰豆网上搜索。

自动控制原理实验汇总.docx

自动控制原理实验汇总

实验一控制系统典型环节的模拟

一、实验目的

(1)熟悉超低频扫描示波器的使用方法。

(2)掌握用运放组成控制系统典型环节的模拟电路。

(3)测量典型环节的阶跃响应曲线。

(4)通过实验了解典型环节中参数的变化对输出动态性能的影响。

二、实验所需挂件及附件

DJK01、DJK15、双踪慢扫描示波器、万用表

三、实验线路及原理

以运算放大器为核心元件,由其不同的R-C输入网络和反馈网络组成的各种典型环节,如图8-1所示。

图中Z1和Z2为复数阻抗,它们都是由R、C构成。

基于图中A点的电位为虚地,略去流入运放的电流,则由图8-1得:

由上式可求得,由下列模拟电路组成的典型环节的

传递函数及其单位阶跃响应。

(1)比例环节

比例环节的模拟电路如图8-2所示:

图8-1运放的反馈连接

 

 

图8-2比例环节

 

(2)惯性环节

 

取参考值R1=100K,R2=100K,C=1uF

 

图8-3惯性环节

(3)积分环节

 

式中积分时间常数T=RC,取参考值R=200K,C=1uF

 

图8-4积分环节

(4)比例微分环节(PD),其接线图如图及阶跃响应如图8-5所示。

 

参考值R1=200K,R2=410K,C=0.1uF

 

图8-5比例微分环节

(5)比例积分环节,其接线图单位阶跃响应如图8-6所示。

 

参考值R1=100KR2=200KC=0.1uF

 

图8-6比例积分环节

(6)振荡环节,其原理框图、接线图及单位阶跃响应波形分别如图8-7、8-8所示。

图8-8为振荡环节的模拟线路图,它是由惯性环节,积分环节和一个反号器组成。

根据它们的传递函数,可以画出图8-7所示的方框图,图中:

 

欲使图8-8为振荡环节,须调整参数K和T1,使0<<1,呈欠阻尼状态。

即环节的单位阶跃响应呈振荡衰减形式。

 

图8-7振荡环节原理框图

 

图8-8振荡环节接线图

四、实验内容

(1)分别画出比例、惯性、积分、微分和振荡环节的模拟电路图。

(2)按下列各典型环节的传递函数,调节相应的模拟电路的参数,观察并记录其单位阶跃响应波形。

①比例环节G1(S)=1和G2(S)=2

②积分环节G1(S)=1/S和G2(S)=1/(0.5S)

③比例微分环节G1(S)=2+S和G2(S)=1+2S

④惯性环节G1(S)=1/(S+1)和G2(S)=1/(0.5S+1)

⑤比例积分环节(PI)G(S)=1+1/S和G(S)=2(1+1/2S)

⑥震荡环节

五、实验报告

(1)画出六种典型环节的实验电路图,并注明相应的参数。

(2)画出各典型环节的单位阶跃响应波形,并分析参数对响应曲线的影响。

(3)写出实验的心得与体会。

六、注意事项

(1)输入的单位阶跃信号取自实验箱中的函数信号发生器。

(2)电子电路中的电阻取千欧,电容为微法。

 

实验二一阶系统的时域响应及参数测定

一、实验目的

(1)观察一阶系统在单位阶跃和斜坡输入信号作用下的瞬态响应。

(2)根据一阶系统的单位阶跃响应曲线确定系统的时间常数。

二、实验所需挂件及附件

序号

型号

备注

1

DJK01电源控制屏

该控制屏包含“三相电源输出”等几个模块。

2

DJK15控制理论实验

或DJK16控制理论实验

3

双踪慢扫描示波器

或数字示波器

4

万用表

三、实验线路及原理

图8-8为一阶系统的模拟电路图。

由该图可知io=i1-i2

 

根据上式,画出图8-10所示的方框图,

其中T=R0C。

由图8-10得:

图8-9一阶系统模拟电路图

图8-10一阶系统原理框图

(1)

图8-11为一阶系统的单位阶跃响应曲线,当t=T时,C(T)=1–e-¹=0.632。

这表示当C(t)上升到稳定值的63.2%时,对应的时间就是一阶系统的时间常数T,根据这个原理,由图8-11可测得一阶系统的时间常数T。

由上式

(1)可知,系统的稳态值为1,因而该系统的跟踪阶跃输入的稳态误差℮ss=0。

图8-11为一阶系统的单位阶跃响应曲线

所以

这表明一阶系统能跟踪斜坡信号输入,但有稳态误差存在,其误差的大小为系统的时间常数T。

四、思考题

(1)一阶系统为什么对阶跃输入的稳态误差为零,而对单位斜坡输入的稳态误差为T?

(2)一阶系统的单位斜坡响应能否由其单位阶跃响应求得?

试说明之。

五、实验方法

(1)根据图8-9所示的模拟电路,调整R0和C的值,使时间常数T=1S和T=0.1S。

(2)uI(t)=1V时,观察并记录一阶系统的时间常数T分别为1S和0.1S时的单位阶跃响应曲线,并标注时间坐标轴。

(3)当uI(t)=t时,观察并记录一阶系统时间常数T为1S和0.1S时的响应曲线,其中斜坡信号可以通过实验箱中的三角波信号获得,或者把单位阶跃信号通过一个积分器获得。

六、实验报告

(1)根据实验,画出一阶系统的时间常数T=1S时的单位阶跃响应曲线,并由实测的曲线求得时间常数T。

(2)观察并记录一阶系统的斜坡响应曲线,并由图确定跟踪误差ess,这一误差值与由终值定理求得的值是否相等?

分析产生误差的原因。

 

实验三二阶系统的瞬态响应分析

一、实验目的

(1)熟悉二阶模拟系统的组成。

(2)研究二阶系统分别工作在=1,0<<1,和1三种状态下的单位阶跃响应。

(3)增益K对二阶系统单位阶跃响应的超调量P、峰值时间tp和调整时间ts。

(4)观测系统在不同K值时跟踪斜坡输入的稳态误差。

二、实验所需挂件及附件

序号

型号

备注

1

DJK01电源控制屏

该控制屏包含“三相电源输出”等几个模块。

2

DJK15控制理论实验

或DJK16控制理论实验

3

双踪慢扫描示波器

或数字示波器

4

万用表

三、实验线路及原理

 

图8-12二阶系统的模拟电路

图8-12为二阶系统的模拟电路图,

它是由惯性环节、积分环节和反号器

组成。

图8-13为图8-12的原理方框图,

图中K=R2/R1,T1=R2C1,T2=R3C2。

由图8-13求得二阶系统的闭环传递函图8-13二阶系统原理框图

数为:

而二阶系统标准传递函数为

调节开环增益K值,不仅能改变系统无阻尼自然振荡频率ωn和阻尼比的值,而且还可以得到过阻尼(>1)、临界阻尼(=1)和欠阻尼(<1)三种情况下的阶跃响应曲线。

(1)当K>0.625,01,系统处在欠阻尼状态,它的单位阶跃响应表达式为:

图8-14为二阶系统在欠阻尼状态下的单位阶跃响应曲线。

(2)当K=0.625时,=1,系统处在临界阻尼状态,图8-1401时的阶跃响应曲线

它的单位阶跃响应表达式为:

图8-15为二阶系统工作临界阻尼时的单位响应曲线。

(3)当K0.625时,1,系统工作在过阻尼状态。

它的单

位阶跃响应曲线和临界阻尼时的单位阶跃响应一样为单调的指

数上升曲线,但后者的上升速度比前者更缓慢。

图8-15=1时的阶跃响应曲线

四、思考题

(1)如果阶跃输入信号的幅值过大,会在实验中产生什么后果?

(2)在电子模拟系统中,如何实现负反馈和单位负反馈?

(3)为什么本实验的模拟系统中要用三只运算放大器?

五、实验方法

(1)根据图8-12,调节相应的参数,使系统的开环传递函数为:

(2)令ui(t)=1V,在示波器上观察不同K(K=10,5,2,0.5)时的单位阶跃响应的波形,并由实验求得相应的σp、tp和ts的值。

(3)调节开环增益K,使二阶系统的阻尼比=1/2=0.707,观察并记录此时的单位阶跃响应波形和σp、tp和ts的值。

(4)用实验箱中的三角波或输入为单位正阶跃信号积分器的输出作为二阶系统的斜坡输入信号。

(5)观察并记录在不同K值时,系统跟踪斜坡信号时的稳态误差。

六、实验报告

(1)画出二阶系统在不同K值(10,5,2,0.5)下的4条瞬态响应曲线,并注明时间坐标轴。

(2)按图8-13所示的二阶系统,计算K=0.625,K=1和K=0.312三种情况下和ωn值。

据此,求得相应的动态性能指标σp、tp和ts,并与实验所得出的结果作一比较。

(3)写出本实验的心得与体会。

 

实验四三阶系统的瞬态响应及稳定性分析

一、实验目的

(1)熟悉三阶系统的模拟电路图。

(2)由实验证明开环增益K对三阶系统的动态性能及稳定性的影响。

(3)研究时间常数T对三阶系统稳定性的影响。

二、实验所需挂件及附件

序号

型号

备注

1

DJK01电源控制屏

该控制屏包含“三相电源输出”等几个模块。

2

DJK15控制理论实验

或DJK16控制理论实验

3

双踪慢扫描示波器

或数字示波器

4

万用表

三、实验线路及原理

图8-16三阶系统原理框图

图8-17三阶系统模拟电路

图8-16为三阶系统的方框图,它的模拟电路如图8-17所示,对应的闭环传递函数为:

 

该系统的特征方程为:

T1T2T3S³+T3(T1+T2)S²+T3S+K=0

其中K=R2/R1,T1=R3C1,T2=R4C2,T3=R5C3。

若令T1=0.2S,T2=0.1S,T3=0.5S,则上式改写为

用劳斯稳定判据,求得该系统的临界稳定增益K=7.5。

这表示K>7.5时,系统为不稳定;K<7.5时,系统才能稳定运行;K=7.5时,系统作等幅振荡。

除了开环增益K对系统的动态性能和稳定性有影响外,系统中任何一个时间常数的变化对系统的稳定性都有影响,对此说明如下:

令系统的剪切频率为c,则在该频率时的开环频率特性的相位为:

(c)=-90-tg-1T1c–tg-1T2c

相位裕量=180+(c)=90-tg-1T1c-tg-1T2c

由上式可见,时间常数T1和T2的增大都会使减小。

四、思考题

(1)为使系统能稳定地工作,开环增益应适当取小还是取大?

(2)系统中的小惯性环节和大惯性环节哪个对系统稳定性的影响大,为什么?

(3)试解释在三阶系统的实验中,输出为什么会出现削顶的等幅振荡?

(4)为什么图8-13和图8-16所示的二阶系统与三阶系统对阶跃输入信号的稳态误差都为零?

(5)为什么在二阶系统和三阶系统的模拟电路中所用的运算放大器都为奇数?

五、实验方法

图8-16所示的三阶系统开环传递函数为:

(1)按K=10,T1=0.2S,T2=0.05S,T3=0.5S的要求,调整图8-17中的相应参数。

(2)用慢扫描示波器观察并记录三阶系统单位阶跃响应曲线。

(3)令T1=0.2S,T2=0.1S,T3=0.5S,用示波器观察并记录K分别为5、7.5和10三种情况下的单位阶跃响应曲线。

(4)令K=10,T1=0.2S,T3=0.5S,用示波器观察并记录T2分别为0.1S和0.5S时的单位阶跃响应曲线。

六、实验报告

(1)作出K=5、7.5和10三种情况下的单位阶跃响应波形图,据此分析K的变化对系统动态性能和稳定性的影响。

(2)作出K=10,T1=0.2S,T3=0.5S,T2分别为0.1S和0.5S时的单位阶跃响应波形图,并分析时间常数T2的变化对系统稳定性的影响。

(3)写出本实验的心得与体会。

 

实验五PID控制器的动态特性

一、实验目的

(1)熟悉PI、PD和PID三种控制器的模拟电路。

(2)通过实验,深入了解PI、PD和PID三种控制器的阶跃响应特性和相关参数对它们性能的影响。

二、实验所需挂件及附件

序号

型号

备注

1

DJK01电源控制屏

该控制屏包含“三相电源输出”等几个模块。

2

DJK15控制理论实验

或DJK16控制理论实验

3

双踪慢扫描示波器

或数字示波器

4

万用表

三、实验线路及原理

PI、PD和PID三种控制器是工业控制系统中广泛应用的有源校正装置。

其中PD为超前校正装置,它适用于稳态性能已满足要求,而动态性能较差的场合;PI为滞后校正装置,它能改变系统的稳态性能;PID是一种滞后超前校正装置,它兼有PI和PD两者的优点。

(1)PD控制器

图8-18为PD控制器的电路图,它的传递函数为:

G(s)=-Kp(TDS+1)

其中Kp=R2/R1,TD=R1C1

(2)PI控制器

图8-19为PI控制器的电路图,它的传递函数为:

图8-18PD控制器的电路图

(3)PID控制器图8-19PI控制器电路图

图8-20为PID控制器的电路图,它的传递函数为:

 

 

图8-20PID控制器电路图

 

四、思考题

(1)试说明PD和PI控制器各适用于什么场合?

它们各有什么优、缺点?

(2)试说明PID控制器的优点。

(3)为什么由实验得到的PD和PID输出波形与它们的理想波形有很大的不同?

五、实验方法

(1)令Ur=1V,C=1uF,用慢扫描示波器分别测试R1=10K和20K时的PD控制器的输出波形(R2不变为20K)。

(2)令Ur=1V,C=1uF,R1=20K用示波器分别测试R2=10K和20K时的PI控制器的输出波形。

(3)令Ur=1V,用示波器测试PID控制器的输出波形。

六、实验报告

(1)画出PD、PI、和PID三种控制器的实验线路图,并注明具体的参数值。

(2)根据三种控制器的传递函数,画出它们在单位阶跃信号作用下的理论上的输出波形图。

(3)根据实验,画出三种控制器的单位阶跃响应曲线,并与由理论求得的输出波形作一分析比较。

(4)分析参数对三种控制器性能的影响。

 

实验六控制系统的动态校正

一、实验目的

(1)要求学生根据书上习题的要求,自行设计一校正装置,并用本实验挂件构成的模拟系统进行实验和实际调试、使学生能认识到校正装置在系统中的重要性。

(2)掌握工程中常用的二阶系统和三阶系统的工程设计方法。

二、实验所需挂件及附件

序号

型号

备注

1

DJK01电源控制屏

该控制屏包含“三相电源输出”等几个模块。

2

DJK15控制理论实验

或DJK16控制理论实验

3

双踪慢扫描示波器

4

万用表

三、实验线路及原理

当系统的开环增益满足其稳态性能的要求后,它的动态性能一般都不理想,甚至发生不稳定。

为此需在系统中串接一校正装置,既使系统的开环增益不变,又使系统的动态性能满足要求。

常用的设计方法有根轨迹法、频率法和工程设计法。

本实验要求用工程设计法对系统进行校正。

(1)二阶系统

图8-21为二阶系统的标准形式,它的开环传递函数为:

 

(1)图8-21二阶系统的标准形式

图8-22所示二阶系统的原理框图

图8-22二阶系统的原理框图

图8-23二阶系统的模拟电路图

其开环传递函数为:

(2)

式中

,比较式

(1)和式

(2)得

(3)

(4)

如要求

,则

时,二阶系统标准形式的闭环传递函数为:

,把

代入上式得

(5)

式(5)就是二阶系统的最优闭环传递函数,理论证明,只要二阶系统的闭环传递函数如式(3)所示的形式,则该系统的阻尼比=1/

=0.707,对阶跃响应的超调量σp只有4.3,调整时间ts为8Ts(∆=±0.05),相位裕量=63。

(2)三阶系统

图8-24为三阶控制系统的模拟电路图,图8-25为其方框图。

 

图8-24三阶系统的模拟电路图

图8-25三阶系统的方框图

Ti=R1C1,1=R2C1,Ks=R4/R3,Ts=R4C2,Tsi=R5C3

由图8-25求得该系统的开环与闭环传递函数分别为

(6)

(7)

其中

由理论证明,当

时,三阶系统具有下列理想的性能指标:

超调量σp=43,调整时间ts=18Ts,相位裕量=36.8。

此时,式(7)可以改写为:

(8)

显然,上式的性能指标比二阶系统要差,这主要是由三阶系统闭环传递函数的分子多项式引起的,为此,需在系统的输入端串接一个给定的滤波器,它的传递函数为:

(9)

于是系统的闭环传递函数为

(10)

在阶跃信号作用下,上述三阶系统具有下列的性能指标:

超调量σp=8

上升时间tr=7.6Ts

调整时间ts=16.4Ts

加入输入滤波器后系统的方框图为图8-26所示,图8-27为给定滤波器的模拟电路图。

 

图8-26三阶系统的方框图

右图为给定滤波器的模拟电路图,其中R7/R6=1,R7C4=4TS

 

图8-27给定滤波器的模拟电路

四、思考题

(1)二阶系统与三阶系统的工程设计依据是什么?

(2)在三阶工程设计中,为什么要在系统的输入端串接一滤波器?

(3)按二阶系统和三阶系统的工程设计,系统对阶跃输入的稳态误差为什么都为零?

但对斜坡信号输入,为什么二阶系统有稳态误差,而三阶系统的稳态误差为零?

五、实验方法

(1)按二阶系统的工程设计方法,设计下列系统的校正装置。

①对象由两个大惯性环节组成,如图8-28所示。

 

图8-28

②对象有三个惯性环节组成,如图8-29所示。

 

图8-29

③对象由一个积分环节和一个惯性环节组成,如图8-30所示。

 

图8-30

(2)按三阶系统工程设计方法,设计下列系统的校正装置。

①对象由两个大惯性环节和一个积分环节组成,其方框图如图8-31所示。

 

图8-31

②对象由两个惯性环节组成,其方框图如图8-32所示。

 

图8-32

六、实验报告

(1)按实验内容的要求,确定各系统所引入校正装置的传递函数,并画出它们的电路图。

(2)画出各实验系统的电路图,并令输入r(t)=1V,测试系统的阶跃响应曲线。

(3)由实验所得的波形,确定系统的性能指标,并与二阶、三阶系统的理想性能指标作一比较。

(4)根据习题要求设计校正装置,并用本实验箱构成的系统进行验证,如果实测的性能指标达不到设计要求,应如何调试,并分析原因。

 

实验七典型环节频率特性的测试

一、实验目的

(1)掌握用李沙育图形法,测量各典型环节的频率特性。

(2)根据所测得频率特性,作出伯德图,据此求得环节的传递函数。

二、实验所需挂件及附件

序号

型号

备注

1

DJK01电源控制屏

该控制屏包含“三相电源输出”等几个模块。

2

DJK15控制理论实验

或DJK16控制理论实验

3

双踪慢扫描示波器

或数字示波器

4

万用表

三、实验线路及原理

对于稳定的线性定常系统或环节,当其输入端加入一正弦信号X(t)=XmSinωt,它的稳态输出是一与输入信号同频率的正弦信号,但其幅值和相位将随着输入信号频率ω的变而变。

即输出信号为:

(t)=mSin(ωt+)=mG(jω)Sin(ωt+)

其中,(ω)=argG(jω)

只要改变输入信号x(t)的频率ω,就可测得输出信号与输入信号的幅值比G(jω)和它们的相位差(ω)=argG(jω)。

不断改变x(t)的频率,就可测得被测环节(系统)的幅频特性G(jω)和相频特性(ω)。

本实验采用李沙育图形法,图8-33为测试的方框图。

图8-33典型环节的测试方框图

在表8-1中列出了超前与滞后时相位的计算公式和光点的转向。

表中2Y0为椭圆与Y轴交点之间的长度,2X0为椭圆与X轴交点之间距离,Xm和Ym分别为X(t)和Y(t)的幅值。

超前

滞后

0~90

90~180

0~90

90~180

=Sin-12Y0/

(2Ym)

=Sin-12X0/

(2Xm)

=180°-Sin-1

2Y0/(2Ym)

=Sin-12X0/

(2Xm)

=Sin-12Y0/

(2Ym)

=Sin-12X0/

(2Xm)

=180-Sin-1

2Y0/(2Ym)

=180°-Sin-1

2X0/(2Xm)

顺时针

顺时针

逆时针

逆时针

四、实验方法

(1)惯性环节的频率特性的测试

令G(S)=1/(0.5S+1),则其相应的模拟电路如图8-34所示。

测量时示波器的X轴停止扫描,把扫频电源的正弦信号同时送到被测环节的输入端和示波器的X轴,被测环节的输出送到示波器的Y轴,如图8-35所示。

 

(实验时取R1=R2=510K,C1=1uF)

图8-34惯性环节的模拟电路图

 

图8-35相频特性测试的接线图

当扫频电源输出一个正弦信号,则在示波器的屏幕上呈现一个李沙育图形------椭圆。

据此,可测得在该输入信号频率下得相位值:

不断改变扫频电源输出信号的频率,就可得到一系列相应的相位值,列表记下不同ω值时的X0和Xm。

测量时,输入信号的频率ω要取得均匀,频率取值范围为15Hz—40KHz。

幅频特性的测试按图8-36接线,测量时示波器的X轴停止扫描,在示波器(或万用表的交流电压档)分别读出输入和输出信号的双倍幅值2Xm=2X1m,2Ym=2Y2m,就可求的对应的幅频值G(jω)=2Y1m/(2Y2m),列标记下2Y1m/(2Y2m),20ℓg2Y1m/(2Y2m)和ω的值。

 

图8-36幅频特性的接线图

表8-3幅频特性的测试

(2)积分环节

待测环节的传递函数为G(S)=1/(0.5S),图8-37为它的模拟电路图。

(取R1=510K,C1=1uF,R0=100K)

图8-37积分环节的模拟电路图

按图8-37和图8-36的接线图,分别测出积分环节的相频特性和幅频特性。

(4)R-C网络的频率特性。

图8-38为滞后---超前校正网络的接线图,分别测试其幅频特性和相频特性。

 

图8-38滞后—超前校正网络的接线图

五、实验报告

(1)按图8-35和8-36的接线图,分别测试惯性、积分、和滞后超前网络的相关数据,并分别填入表中。

(2)按实验数据,分别画出()~和20lgG(jω)~的曲线。

作幅频特性20lgG(jω)~的渐进线,据此写出各环节的传递函数。

(3)把实测求得的传递函数与理论值进行比较,并分析产生差异的原因。

 

实验八线性系统频率特性的测试

一、实验目的

(1)掌握用李沙育图形法测试线性系统的频率特性。

(2)根据所测得的频率特性,写出系统的传递函数。

二、实验所需挂件及附件

序号

型号

备注

1

DJK01电源控制屏

该控制屏包含“三相电源输出”等模块。

2

DJK15控制理论实验

或DJK16控制理论实验

3

双踪慢扫描

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 节日庆典

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1