防静电技术基础理论.docx
《防静电技术基础理论.docx》由会员分享,可在线阅读,更多相关《防静电技术基础理论.docx(6页珍藏版)》请在冰豆网上搜索。
防静电技术基础理论
防静电技术基础理论
一、静电学说的起源和定义
大约在公元前600年的时候,希腊哲学家泰利斯就曾经叙述过用毛织物摩擦过的琥珀具有一种能吸引轻小物体的能力,也就是我们现在常说的摩擦起电现象。
到了1600年,一位名叫威廉.吉尔伯特的英国学者对上述现象在深入研究后指出,用丝绸摩擦玻璃或许多其它物质同样也会观察到类似现象。
为了区别直流电、交流电,人们通常把相对于观察者宏观上不发生定向流动的电荷称为静电。
二、名词解释
1、电位与电位差
在静电场中a、b两点的电位之差称为电位差,通常也叫做电压。
注意:
需要明确一个概念,无论是正负电荷,只要存在点位差,就存在电压。
2、导体和绝缘体
各种物体对电流的通过有着不同的阻碍能力,这种不同的物体允许电流通过的能力叫做物体的导电性能。
通常把电阻系数小的、导电性能好的物体叫做导体。
例如:
银、铜、铝是良导体;含有杂质的水、人体、潮湿的树木、钢筋混凝土电杆、墙壁、大地等,也是导体,但不是良导体。
电阻系数很大的、导电性能很差的物体叫做绝缘体。
例如:
陶瓷、云母、玻璃、橡胶、塑料、电木、纸、棉纱、树脂等物体,以及干燥的木材等都是绝缘体(也叫电介质)。
导电性能介于导体和绝缘体之间的物体叫做半导体。
例如:
硅、锗、硒、氧化铜等都是半导体。
3、静电放电
当带电体周围的场强超过周围介质的绝缘击穿场强时,因介质产生电离而使带电体上静电荷部分或全部消失的现象。
三、静电的危害
静电的危害很多,主要包括两种。
它的第一种危害来源于带电体的吸附作用。
在印刷厂里,纸页之间的静电会使纸页粘合在一起,难以分开,给印刷带来麻烦;在制药厂里。
由于静电吸引尘埃,会使药品达不到标准的纯度;在放电视时荧屏表面的静电容易吸附灰尘和油污,形成一层尘埃的薄膜,使图像的清晰程度和亮度降低;在混纺衣服上常见而又不易拍掉的灰尘。
静电的第二大危害,是因静电放电产生的电火花点燃某些易燃物体而发生爆炸。
漆黑的夜晚,人们脱尼龙、毛料衣服时,会发出火花和“叭叭”的响声,这对人体基本无害。
但在手术台上,静电火花会引起麻醉剂的爆炸,伤害医生和病人;在煤矿,则会引起瓦斯爆炸,会导致工人死伤,矿井报废。
总之,静电危害源于吸附作用和静电火花,静电危害中最严重的是静电放电引起可燃物起火和爆炸。
四、静电的产生
(一)起电模式
A.接触起电
接触起电可发生在固体-固体、液体-液体或固体-液体的分界面上。
气体不能由这种方式带电,但如果气体中悬浮有固体颗粒或液滴,则固体颗粒或液滴均可以由接触方式带电,以致这种气体能够携带静电电荷。
B.破碎起电
不论材料破碎前其内部电荷分布是否均匀,破碎后均可能在宏观范围内导致正负电荷分离,产生静电。
这种起电称破碎起电。
固体粉碎、液体分离过程的起电都属于破碎起电。
C.感应起电
导体能由其周围的一个或一些带电体感应而带电。
任何带电体周围都有电场,电场中的导体能改变周围电场的分布,同时在电场作用下,导体上分离出极性相反的两种电荷。
如果该导体与周围绝缘则将带有电位,称感应带电。
D.电荷迁移
当一个带电体与一个非带电体相接触时,电荷将按各自导电率所允许的程度在它们之间分配,这就是电荷迁移。
当带电雾滴或粉尘撞击在固体上(如静电除尘)时,会产生有力的电荷迁移。
当气体离子流射在初始不带电的物体上时,也会出现类似的电荷迁移。
E.温差起电
关于温差起电有两个说法:
一是两个温度不同的微小粒子在接触、分离的过程中因温度不同而分别带上不同电荷的过程。
另一个说法是因粒子本身的温度变化或状态变化而发生的电荷分离现象。
(二)影响静电产生的因素
静电产生受物质种类、杂质、表面状态、接触特征、分离速度、带电历程等因素的影响。
A.物质种类
相互接触的两种物体材质不同时,界面双电层和接触电位差亦不同,起电强弱也不同。
在静电序列中相隔较远的两种物体相接触产生的接触电位差较大。
B.杂质
一般情况下,混入杂质有增加静电的趋向。
但当杂质的加入降低了原有材料的电阻率时,则有利于静电的泄漏。
由于静电产生多表现为界面现象,所以,当固体材料表面被水及其污物污染时会增强静电。
C.表面状态
表面粗糙,使静电增加;表面受氧化也使静电增加。
D.接触特征
接触面积增大、接触压力增大都可使静电增加。
E.分离速度
分离速度越高,所产生静电越强。
所产生静电大致与分离速度的二次方成正比。
F.带电历程
带电历程会改变物体表面特性,从而改变带电特征。
一般情况下,初次或初期带电较强,重复性或持续性带电较弱。
(三)静电积聚和静电放电
A.静电积聚
绝缘体带电后由于材料本身的高电阻而使电荷保持在绝缘体上;被绝缘的导体也使电荷保持在导体上,二者均称为静电的积聚。
通常情况下,纯净的气体是绝缘体,因此悬浮状态的颗粒云、液滴云或雾都能将它们的电荷保持很长时间而与其自身的电导率无关。
B.静电放电.
积聚在液体或固体上的电荷,对其他物体或接地导体放电时可能引起灾害。
静电放电在形式上和引燃能力上有很大差别。
(a)火花放电
火花放电是发生在液态或固态导体之间的放电。
其特征是有明亮的放电通道,通道内有很高的电流,整个通道内的气体完全电离。
放电很快且有很响的爆裂声。
两导体之间的电场强度超过击穿强度时就会发生火花放电。
(b)电晕放电
当导体上有曲率半径很小的尖端存在时,则发生电晕放电。
电晕放电可能指向其他物体也可能不指向某一特定方向。
电晕放电时,尖端附近的场强很强,尖端附近气体被电离,电荷可以离开导体;而远离尖端处场强急剧减弱,电离不完全,因而只能建立起微小的电流。
电晕放电的特征是伴有“嘶嘶”的响声,有时有微弱的辉光。
电晕放电可以是连续放电,也可以是不连续的脉冲放电。
电晕放电的能量密度远小于火花放电的能量密度。
(c)刷形放电
刷形放电发生在导体与非导体之间,是自非导体上许多点发出短小火花的放电。
每个火花由非导体表面能够流进其内的电量来决定。
其放电总体经常有刷子似的形状。
如果导体很尖,导体处的放电将具有电晕放电那样向前扩展的特征。
(d)雷形放电
当悬浮在空气中的带电粒子形成大范围;高电荷密度的空间电荷云时,可发生闪雷状的所谓雷形放电。
受压液体、液化气高速喷出时可能发生雷形放电,雷形放电能量很大,引燃危险也很大。
5、静电引燃
静电放电能否引燃易燃、易爆混合物,取决于混合物的成分和温度、放电能量以及能量随时间的分布和在空间的分布。
引燃源经常是导体的火花放电。
因此,火花放电通常被用来测试引燃能量。
五、静电的抑制与泄放
防止静电危害首先要减少静电的产生;其次,对已产生的静电,应尽量限制,使其达不到造成危险的程度;再次是使产生的电荷尽快泄漏或中和,从而避免电荷的大量积聚,导致静电放电造成危害。
1、减少摩擦起电
限制易燃和可燃液体的流速。
当液体平流时,产生的静电量与流速成正比,且与管道的内径大小无关;当液体紊流时产生的静电量与流速的1.75次方成正比,并与管道内径的o.75次方成正比。
目前,世界各国控制流速的标准尚不统一。
总之,在确定流速时,不但要考虑管道的内径,而且要注意流体的性质、所含杂质的成分和数量、管道的材质等各种因素的影响。
2、静电接地
静电接地的作用是泄放导体上可能集聚的电荷,使导体与大地等电位,使导体间电位差为零。
3、降低电阻率
当物质的电阻率小于106Ω.cm时,就能防止静电荷的积聚。
4、增加空气湿度
当空气的相对湿度在65—70%以上时,物体表面往往会形成一层极微薄的水膜。
水膜能溶解空气中的CO2,使表面电阻率大大降低,静电荷就不易积聚。
如果周围空气的相对湿度降至40一50%时,静电不易逸散,就有可能形成高电位。
增加空气湿度的常用方法是向空气中喷水雾,一般均选用旋转式风扇喷雾器,从墙外吹入。
5、空气电离法
利用静电消除器来电离空气中的氧、氮离子,使空气变成导体,就能有效地消除物体表面的静电荷。
常用的静电消除器有:
(a)感应式静电消除器
它还可以分为钢件接地感应式、刷型感应式、针尖感应式等几种。
主要用于造纸、橡胶、纺织、塑料等生产及加工行业。
(b)高压式静电消除器
它主要有外加式、工频交流式、可控硅、交流高频高压式等。
在化工、纺织等工业中可根据不同的要求选用。
此外,还有高压离子流、放射性辐射等形式,适用于其他特殊场所。
附录:
管状液体静电消除器
(参考件)
当绝缘性液体流速较高时,可在管线末端装用此项消电器,以减少出口后的静电。
其构造是在1m多长的钢管内,衬以壁厚约50mm的聚乙烯塑料套筒,其内径与输油管道相同。
穿过套筒壁在周围分别插入尖针五环,每环三枚,针用耐高温材料制作,末端固定在钢管上,并与地相接,当带电油流过时,针尖附近发生电离,使静电中和,其构造见图D1所示,使用中应注意定期清洁和维修,以保持消电效率。
高压排气静电消除器
(参考件)
高压排气静电消除器适用于压力高容量大的易燃气体(如液氢的放空)。
该消电器装设在排放口,其结构为一金属支架,支架上附设若干接地尖针如图E1所示。
其设计原则是使消电器对带电气流的电容量最小,同时使消电器支架和附近的接地物体对针尖的屏蔽作用最小。
且为了避免摩擦碰撞火花和腐蚀,要在金属支架外层喷涂一层塑料膜。
针尖宜用耐腐蚀耐高温材料。