六年级上册数学知识点归纳整理.docx
《六年级上册数学知识点归纳整理.docx》由会员分享,可在线阅读,更多相关《六年级上册数学知识点归纳整理.docx(10页珍藏版)》请在冰豆网上搜索。
六年级上册数学知识点归纳整理
六年级数学上册知识点整理
第一单元位置
用数据表示位置的方法:
先横着数,看在第几列,这个数就是数据中的第一个数;再竖着数,看在第几行,这个数就是数据中的第二个数。
(第几行,第几列)
第二单元分数乘法
一、分数乘法
(一)分数乘法的意义:
1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
2、分数乘分数是求一个数的几分之几是多少。
(二)、分数乘法的计算法则:
1、分数与整数相乘:
分子与整数相乘的积做分子,分母不变。
2、分数与分数相乘:
用分子相乘的积做分子,分母相乘的积做分母。
注意
(1)分数的化简:
分子、分母同时除以它们的最大公因数。
(2)关于分数乘法的计算:
可在乘的过程中约分,也可将积的分子分母约分。
(3)当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、规律:
(乘法中比较大小时)
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:
a×b=b×d
乘法结合律:
a×b×c=a×(b×c)
乘法分配律:
a×(b+c)=ab+ac或a×(b-c)=ab-ac
二、分数乘法的解决问题
(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)
1、找单位“1”:
“占”、“是”、“比”后面的量。
2、求一个数的几倍是多少;求一个数的几分之几是多少。
用乘法
三、倒数
1、倒数的意义:
乘积是1的两个数互为倒数。
(互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
)
2、求倒数的方法:
(1)、求分数的倒数:
交换分子分母的位置。
(2)、求整数的倒数:
把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:
把带分数化为假分数,再求倒数。
(4)、求小数的倒数:
把小数化为分数,再求倒数。
3、1的倒数是1;0没有倒数。
4、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
第三单元分数除法
一、分数除法
1、分数除法的意义:
分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:
除以一个不为0的数,等于乘这个数的倒数。
3、规律(分数除法比较大小时):
(1)当除数大于1,商小于被除数;
(2)当除数小于1(不等于0),商大于被除数;
(3)当除数等于1,商等于被除数。
4、分数混合运算顺序:
(1)同级运算要按从左往右顺序计算。
(2)先算乘、除后算加、减,有括号的,要先算括号里面的
(3)一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
(4)能用运算律的要用运算律。
二、分数除法解决问题
(已知单位“1”的几分之几是多少,求单位“1”的量。
)
用方程解应用题步骤:
1、解。
(写“解”字,打冒号。
)
找。
(找等量关系)
设。
(设未知数,根据题目设未知数,问什么设什么。
)
列。
(根据等量关系列方程)
解。
(解方程)
答。
(写答数)
2、求一个数是另一个数的几分之几:
就一个数÷另一个数
3、求一个数比另一个数多(少)几分之几:
两个数的相差量÷单位“1”的量
三、比和比的应用
(一)、比的意义
1、比的意义:
两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
3、比可以表示两个相同量的关系,即倍数关系。
也可以表示两个不同量的比,得到一个新量。
4、根据比与除法、分数的关系,可以理解比的后项不能为0。
体育比赛中出现两队的分是2:
0等,这只是一种记分的形式,不表
两个数相除的关系。
5、比和除法、分数的联系:
比
前项
比号“:
”
后项
比值
除法
被除数
除号“÷”
除数
商
分数
分子
分数线“—”
分母
分数值
(二)、比的基本性质
1、
(1)商不变的性质:
被除数和除数同时乘或除以相同的数(0除外),商不变。
(2)分数的基本性质:
分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
(3)比的基本性质:
比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:
比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、化简比的类型:
4.按比例分配:
把一个数量按照一定的比来进行分配。
这种方法通常叫做按比例分配。
第四单元圆
一、认识圆形
1、圆的定义:
圆是由曲线围成的一种平面图形。
2、圆心:
将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O表示。
它到圆上任意一点的距离都相等.
3、半径:
连接圆心到圆上任意一点的线段叫做半径。
一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:
通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有直径都相等。
7、在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的1/2。
用字母表示为:
d=2r或r=d/2
8、轴对称图形:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
二、圆的周长
1、圆的周长:
围成圆的曲线的长度叫做圆的周长。
用字母C表示。
2、圆周率:
任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π表示。
圆周率π是一个无限不循环小数。
在计算时,一般取π≈3.14。
3、圆的周长公式:
C=πd→d=C÷π或C=2πr→r=C÷2π
已知直径求周长:
C=πd已知半径求周长:
C=2πr
已知周长求直径:
d=C÷π已知周长求半径:
r=C÷π÷2
三、圆的面积
1、圆的面积:
圆所占平面的大小叫做圆的面积。
用字母S表示。
2、圆面积公式的推导:
把一个圆平均分成若干份,拼成一个近似的长方形,拼成的长方形的长就是圆周长的一半(πr),拼成的长方形的宽就是圆的半径r,因为长方形的面积=长x宽,所以圆的面积:
s=πrxr=πr²
已知半径求面积:
S=πr²已知直径求面积:
S=π(d÷2)²已知周长求面积:
S=π﹙C÷2÷π﹚²
3、环形的面积:
一个环形,外圆的半径是R,内圆的半径是r。
(R=r+环的宽度.))
S环=πR²-πr² 或S环=π(R²-r²)。
4、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。
而面积扩大或缩小的倍数是这倍数的平方倍。
5、两个圆:
半径比=直径比=周长比;而面积比等于这些比的平方。
6、确定起跑线:
每相邻两个跑道相差的距离是:
2×π×跑道的宽度
7、常用各π值结果:
2π=6.283π=9.424π=12.565π=15.76π=18.847π=21.988π=25.129π=28.2610π=31.4
16π=50.2425π=78.536π=113.04
常用平方数结果
=121
=144
=169
=196
=225
=256
=289
=324
=361
第五单元:
百分数
一、概念:
如18%、50%、64.2%-----这样的数,叫做百分数。
百分数表示一个数是另一个数的百分之几。
百分数也叫做百分率后百分比。
1、百分数和分数的区别:
百分数只能表示两个数的比的关系,而分数不仅可以表示数的关系,还可以表示成一个具体的量,可以带上单位名称。
2、百分数和小数及分数的互化
(1)小数化成百分数:
把小数点向右移动两位再在数的后面加上百分号。
(2)百分数化成小数:
把百分号去掉,同时把小数点向左移动两位。
(3)百分数化成分数:
化成分母是100的分数,能约分的要约分。
如果百分数分子是小数,要先根据分数的基本性质,把百分数改写成分数是整数的分数,再约分。
(4)分数化成百分数有两种方法:
一种是根据分数的基本性质,把分数的分母化成为100的分数,然后改写成百分数。
另一种是先把分数化成小数,在利用小数化百分数的方法。
(利用第二种时,除不尽,通常保留三位小数)5、常用的分数、小数及百分数的互化
=0.5=50%
=0.25=25%
=0.75=75%
=0.2=20%
=0.4=40%
=0.6=60%
=0.8=80%
=0.125=12.5%
=0.375=37.5%
=0.625=62.5%
=0.875=87.5%
=0.1=10%
=0.0625=6.25%
=0.05=5%
=0.04=4%
=0.025=2.5%
=0.02=2%
=0.01=1%
二:
用百分数解决问题:
1、在生产工作中常用的百分率有:
及格率=
100%增产率=
100%
合格率=
100%出勤率=
100%
一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。
2、解答百分数应用题时,要注意弄清楚谁和谁比,比的标准不同,单位“1”也不同,解题时要注意找准把谁看单位“1”。
3、在实际生活中,人们常用“增加百分之几”、“减少百分之几”、“节约百分之几”----来表示增加、减少的幅度。
(占谁的把谁看成单位“1”)
4、税收主要分为消费税、增值税、营业税和个人所得税等几类。
缴纳的税款叫做应纳税额,应纳税额与各种收入(销售额、营业额----)的比率叫做税率。
5、在银行存款的方式有多种,如活期、整存整取、零存整取等。
存入银行的钱叫做本金;取款时银行多付的钱叫做利息,利息与本金的比值叫做利率。
6、国家规定,存款所得的利息要按5%的税率纳税,这个税叫‘利息税”。
我们从银行取款时得到的利息都是税后利息。
国债的利息不纳税。
利息=本金×利率×时间
7、成数、打折、利润、利息、税收应用题的解题公式:
(1)含义:
五成的含义是:
收成是50%,二成五的含义是:
收成是25%
八折的含义是:
现价是原价的80%,或按原价的80%出售,或降了20%;
八五折的含义是:
现价是原价的85%,或按原价的85%出售,或降了15%。
(2)公式:
现价=原价×折数(通常写成百分数形式)
利润=售价-成本
应纳税额=需要交税的钱×税率
利息=本金×利率×时间
第六章:
统计
1、常用统计图:
条形统计图、折线统计图、扇形统计图。
2、用整个圆的面积表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数,这样的统计图我们称为扇形统计图。
特点:
通过扇形统计图我们可以很清楚地表示出各部分数量同总数之间的关系。
3、条形统计图的的特点:
条形统计图可以清楚地看出每个数量的多少。
折线统计图的特点:
折线统计图不仅可以看出数量的多少而且可以看出数量的增减变化情况。
第七单元:
数学广角
1、用表格方式解决有局限性,数目必须小,
2、用假设法解决
3、用代数方法解(用方程解)
(1)审题,弄清题意
(2)找等量关系
(3)设未知数,根据题目设未知数,问什么设什么。
)
(4)根据等量关系列方
(5)解方程)
(6)(答)。