输入电阻和输出电阻.docx

上传人:b****2 文档编号:686617 上传时间:2022-10-12 格式:DOCX 页数:7 大小:21.27KB
下载 相关 举报
输入电阻和输出电阻.docx_第1页
第1页 / 共7页
输入电阻和输出电阻.docx_第2页
第2页 / 共7页
输入电阻和输出电阻.docx_第3页
第3页 / 共7页
输入电阻和输出电阻.docx_第4页
第4页 / 共7页
输入电阻和输出电阻.docx_第5页
第5页 / 共7页
点击查看更多>>
下载资源
资源描述

输入电阻和输出电阻.docx

《输入电阻和输出电阻.docx》由会员分享,可在线阅读,更多相关《输入电阻和输出电阻.docx(7页珍藏版)》请在冰豆网上搜索。

输入电阻和输出电阻.docx

输入电阻和输出电阻

输入电阻是用来衡量放大器对信号源的影响的一个性能指标。

输入电阻越大,表明放大器从信号源取的电流越小,放大器输入端得到的信号电压也越大,即信号源电压衰减的少。

因此作为测量信号电压的示波器、电压表等仪器的放大电路应当具有较大的输入电阻。

如果想从信号源取得较大的电流,则应该使放大器具有较小的输入电阻。

关键点是输入电阻是和信号源电阻是并联的关系,给信号源并联上一个非常大的电阻,假设信号源电压不变,则通过输入电阻的电流非常小,即上面所说的从信号源取得的电流非常小,与信号源并联上此输入电阻后,二者差的越大,则二者的等效并联电阻值越接近信号源电阻,从而信号源上的电压虽然有所降低,但越接近最初的值,假设输入电阻无穷大,即断路,则相当于没有给信号源并联电阻,电压就是初值,不会衰减,这就是上面所说的信号源电压衰减的少。

 

   输出电阻用来衡量放大器带负载能力的强弱。

当放大器将放大了的信号输出给负载电阻RL时,对负载RL来说,放大器可以等效为具有内阻Ro的信号源,由这个信号源向RL提供输出信号电压和输出信号电流。

Ro称为放大器的输出电阻,它是从放大器输出端向放大器本身看入的交流等效电阻。

如果输出电阻Ro很小,满足R0<

反之,如果输出电阻Ro很大,满足Ro>>RL条件,则当RL在较大范围内变化时,就可维持输出信号电流的恒定。

放大器在不同负载条件瞎维持输出信号电压(或电流)恒定的能力称为带负载能力。

而输出电阻Ro就是表征这种能力的一个性能指标。

关键点是把放大器等效为了具有内阻的信号源,而将负载并联到了信号源内阻上,这样分析同输入电阻方法相同。

 

共集电极放大器又称为射极跟随器,具有很大的输入电阻和较小的输出电阻(一般为几欧或几百欧)。

为了降低输出电阻值,可选用B值大的管子,较小的输出电阻,说明具有很强的带负载能力,负载在较大范围内变化时,基本可以维持输出信号电压的恒定。

共集电极电路不能放大电压信号(总是小于1),但可以放大电流信号,放大功率。

该电路常应用于多级放大电路中高输入阻抗的输入级,低输出阻抗的输出级,或者作为实现阻抗变换的缓冲级。

比如在线阵CCD输出后进行相关双采样前需接一级射极跟随器来增大电流,提高驱动后级电路的能力。

因为信号源电阻会影响电路的输出电阻,所以应考虑信号源内阻Rs的影响。

此外,负载电阻RL会影响输入电阻Ri的,这在放大电路的分析和设计计算时应予以注意。

共发射极放大电路的电压放大倍数较大,而且输出信号电压与输入信号电压反相。

他的电流放大倍数也比较大。

他的输入电阻和输出电阻大潇合适。

这种电路常应用于对输入电阻、输出电阻无特殊要求的地方,作为一般低频多级放大电路的输入级、中间级或输出级。

共基级放大电路的电压放大倍数也比较大,而且输出信号与输入信号电压同相。

他的电流放大倍数小于1,不能放大电流。

这种电路的输入电阻小,输出电阻适中。

由于他的频率特性较好,常用于宽频带放大器和高频带放大器。

 

零点漂移

编辑本段零点漂移

零点漂移概念

  零点漂移可描述为:

指当放大电路输入信号为零(即没有交流电输入)时,由于受温度变化,电源电压不稳等因素的影响,使静态工作点发生变化,并被逐级放大和传输,导致电路输出端电压偏离原固定值而上下漂动的现象它又被简称为:

零漂

零点漂移的形成及产生原因

  零点漂移是怎样形成的:

运算放大器均是采用直接耦合的方式,我们知道直接耦合式放大电路的各级的Q点是相互影响的,由于各级的放大作用,第一级的微弱变化,会使输出级产生很大的变化。

当输入短路时(由于一些原因使输入级的Q点发生微弱变化象:

温度),输出将随时间缓慢变化,这样就形成了零点漂移。

  产生零漂的原因是:

产生零点漂移的原因很多,如电源电压不稳、元器件参数变值、环境温度变化等。

其中最主要的因素是温度的变化,因为晶体管是温度的敏感器件,当温度变化时,其参数UBE、β、ICBO都将发生变化,最终导致放大电路静态工作点产生偏移。

此外,在诸因素中,最难控制的也是温度的变化。

抑制零点漂移的措施

  抑制零点漂移的措施:

除了精选元件、对元件进行老化处理、选用高稳定度电源以及用第二单元中讨论的稳定静态工作点的方法外,在实际电路中常采用补偿和调制两种手段。

补偿是指用另外一个元器件的漂移来抵消放大电路的漂移,如果参数配合得当,就能把漂移抑制在较低的限度之内。

在分立元件组成的电路中常用二极管补偿方式来稳定静态工作点。

在集成电路内部应用最广的单元电路就是基于参数补偿原理构成的差动式放大电路。

调制是指将直流变化量转换为其它形式的变化量(如正弦波幅度的变化),并通过漂移很小的阻容耦合电路放大,再没法将放大了的信号还原为直流成份的变化。

这种方式电路结构复杂、成本高、频率特性差。

 

DB

分贝(工程应用)

  如(此处以功率为例):

  X=100000=10^5

  X(dB)=10*lg(X)dB=10*lg(10^5)dB=50dB

  X=0.000000000000001=10^-15

  X(dB)=10*lg(X)dB=10*lg(10^-15)dB=-150dB

  一般来讲,在工程中,dB和dB之间只有加减,没有乘除。

而用得最多的是减法:

dBm减dBm实际上是两个功率相除,信号功率和噪声功率相除就是信噪比(SNR)。

比如:

30dBm-0dBm=1000mW/1mW=1000=30dB。

dBm加dBm实际上是两个功率相乘,没有实际的物理意义。

  在电子工程领域,放大器增益使用的就是dB(分贝)。

放大器输出与输入的比值为放大倍数,单位是“倍”,如10倍放大器,100倍放大器。

当改用“分贝”做单位时,放大倍数就称之为增益,这是一个概念的两种称呼。

  电学中分贝与放大倍数的转换关系为:

  A(V)(dB)=20lg(Vo/Vi);电压增益

  A(I)(dB)=20lg(Io/Ii);电流增益

  Ap(dB)=10lg(Po/Pi);功率增益

  分贝定义时电压(电流)增益和功率增益的公式不同,但我们都知道功率与电压、电流的关系是P=V^2/R=I^2*R。

采用这套公式后,两者的增益数值就一样了:

  10lg[Po/Pi]=10lg[(Vo^2/R)/(Vi^2/R)]=20lg(Vo/Vi)。

注意:

这只是在Ri=Ro的电路中适用,比如在有线电视系统中各种器材的匹配阻抗都是75Ω。

  使用分贝做单位主要有三大好处。

  

(1)数值变小,读写方便。

电子系统的总放大倍数常常是几千、几万甚至几十万,一台收音机从天线收到的信号至送入喇叭放音输出,一共要放大2万倍左右。

用分贝表示先取个对数,数值就小得多。

  

(2)运算方便。

放大器级联时,总的放大倍数是各级相乘。

用分贝做单位时,总增益就是相加。

若某功放前级是100倍(20dB),后级是20倍(13dB),那么总功率放大倍数是100×20=2000倍,总增益为20dB+13dB=33dB。

  (3)符合听感,估算方便。

人听到声音的响度是与功率的相对增长呈正相关的。

例如,当电功率从0.1瓦增长到1.1瓦时,听到的声音就响了很多;而从1瓦增强到2瓦时,响度就差不太多;再从10瓦增强到11瓦时,没有人能听出响度的差别来。

如果用功率的绝对值表示都是1瓦,而用增益表示分别为10.4dB,3dB和0.4dB,这就能比较一致地反映出人耳听到的响度差别了。

您若注意一下就会发现,Hi-Fi功放上的音量旋钮刻度都是标的分贝,使您改变音量时直观些。

  分贝数值中,-3dB和0dB两个点是必须了解的。

-3dB也叫半功率点或截止频率点。

这时功率是正常时的一半,电压或电流是正常时的1/√2。

在电声系统中,±3dB的差别被认为不会影响总特性。

所以各种设备指标,如频率范围,输出电平等,不加说明的话都可能有±3dB的出入。

例如,前面提到的频响10Hz~40kHz,就是表示在这段频率中,输出幅度不会超过±3dB,也就是说在10Hz和40kHz这二个端点频率上,输出电压幅度只有中间频率段的0.707(1/根2)倍了。

0dB表示输出与输入或两个比较信号一样大。

分贝是一个相对大小的量,没有绝对的量值。

可您在电平表或马路上的噪声计上也能看到多少dB的测出值,这是因为人们给0dB先定了一个基准。

例如声级计的0dB是2×10-4μb(微巴),这样马路上的噪声是50dB、60dB就有了绝对的轻响概念。

常用的0dB基准有下面几种:

dBFS——以满刻度的量值为0dB,常用于各种特性曲线上;dBm——在600Ω负载上产生1mW功率(或0.775V电压)为0dB,常用于交流电平测量仪表上;dBV——以1伏为0dB;dBW——以1瓦为0dB。

一般读出多少dB后,就不用再化为电压、声压等物理量值了,专业人士都能明白。

只有在极少数场合才要折合。

这时只需代入公式:

10^(A/20)×D0或10^(A/10)×D0计算即可。

A为读出的分贝数值,D0为0dB时的基准值,电压、电流或声压用A/20,电功率、声功率或声强则用A/10。

现在您就可以来回答本文开头的问题了。

第二只音箱在相同输入时比第一只音箱响一倍,如果保持两只音箱一样响的话,第二只音箱只要输入一半功率即可。

第一只功放只是很普通的品种,第二只功放却很Hi-Fi,整个频率范围内输出电压只有±2.3%的差别!

  简单地说,dB是一个比值,举个例子,音频行业中,功率大一倍即是大3dB。

  又比如音箱的灵敏度单位是dB,声压计测出的声音强度也是dB。

  这里要提一下dBm,dBw,dBu,dBc的含义和之间的关系,dBm是一个考征功率绝对值的值,计算公式为:

10lgP(功率值/1mw),这是一个绝对值,0dBm即使1毫瓦所转换的能量。

  dBw与dBm一样,dBw是一个表示功率绝对值的单位(也可以认为是以1W功率为基准的一个比值),计算公式为:

10lg(功率值/1w)。

dBw与dBm之间的换算关系为:

0dBw=10lg1W=10lg1000mw=30dBm,由此可见,0dBw是一个比0dBm大得多的多的单位,功率上相差1000倍,因此专业音频设备上,最典型的例子就是功放,0dB的刻度是最大值,功放的旋钮其实是一个衰减器;

  dBu是以.775v电压作为基准值的一个单位参数,dBv则是1V为基准值,因此,0dBv大概等于2.2dBu;它们换算公式是:

xdBv=(x+2.2)dBu

  而dBc在数字音频系统中比较常见,这也是一个考量相对功率的值。

比如某处理器内部设置的0dBc实际等同于是-24dBm;

  而我们在统计声音响度或者声压级时也会采用分贝dB作为单位去衡量,这是因为dB的步阶可以如实地反映人对声音的感觉。

实践证明,声音的分贝数增加或减少一倍,人耳听觉响度也提高或降低一倍。

即人耳听觉与声音功率分贝数成正比。

  dbdbmdbidbcw的区别

  -

  dBm与wdbi2008-02-2210:

43dBm意即分贝毫瓦。

  功率单位与P(瓦特)换算公式:

  1dBm=30+10lgP(P单位瓦特)

  首先,DB是一个纯计数单位:

dB=10lgX。

dB的意义其实再简单不过了,就是把一个很大(后面跟一长串0的)或者很小(前面有一长串0的)的数比较简短地表示出来。

如:

  X=1000000000000000(多少个了?

)=10lgX=150dB

  X=0.000000000000001=10logX=-150dB

  dBm定义的是miliwatt。

0dBm=10lg1mw;

  dBw定义watt。

0dBw=10log1W=10log1000mw=

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1