一阶常微分方程的奇解.docx

上传人:b****5 文档编号:6703695 上传时间:2023-01-09 格式:DOCX 页数:13 大小:129.12KB
下载 相关 举报
一阶常微分方程的奇解.docx_第1页
第1页 / 共13页
一阶常微分方程的奇解.docx_第2页
第2页 / 共13页
一阶常微分方程的奇解.docx_第3页
第3页 / 共13页
一阶常微分方程的奇解.docx_第4页
第4页 / 共13页
一阶常微分方程的奇解.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

一阶常微分方程的奇解.docx

《一阶常微分方程的奇解.docx》由会员分享,可在线阅读,更多相关《一阶常微分方程的奇解.docx(13页珍藏版)》请在冰豆网上搜索。

一阶常微分方程的奇解.docx

一阶常微分方程的奇解

摘要2

1.何谓奇解2

2.奇解的产生3

3.包络跟奇解的关系4

4.理论上证明C-判别曲线与P-判别曲线方法5

4.1克莱罗微分方程9

5.奇解的基本性质12

5.1定理112

5.2定理214

5.3定理314

6.小结14

参考文献:

15

一阶常微分方程的奇解

摘要

在常微分方程中,我们知道方程的解可以有多种,现在我们来讨论求奇解的方法。

我们看到某些微分方程,会存在一些特殊的积分曲线,他并不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。

从而我们引出了积分曲线族的包络,而为了求微分方程的奇解,,我们应先求出他的通解,然后求通解的包络。

关键词:

奇解,包络,C-判别式,P-判别式

1.何谓奇解

设一阶隐式方程F(x,y,y,)=0有一特解

(x),xj

如果对每一点,在P点的任何一个领域内,方程F(x,y,y')=0都有一个不

同于的解在P点与相切,则称是微分方程的F(x,y,yJ=O的奇解

定义:

如果一个一阶微分方程的一个特解的积分曲线上的每一点都至少和这个微分方程的不同的积分曲线相切,并且这相切的积分曲线在切点的任何邻域内都不重合,则称这个特解为这个微分方程的奇解

2.奇解的产生

dy

dx

先看一个例子,求方程

(1)

的解

或与它等价的方程烹y3

经分离变量后,可得

(1)的通解

y丄(xc)3

27

谷易看出,y=0也是原方程的一个解。

现在来研究这个解y=0有什么特殊的

地方。

由图我们看到,在解y=0上的每一点(X。

,0)处相切,这种特殊的积分曲线y=0称为奇积分曲线,他所对应的解就是奇解,这就是奇解的产生。

我们现在给出曲线族包络的定义

某些微分方程,存在一些特殊的积分曲线,会存在一些特殊的积分曲线,他并不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。

在几何学里,这些特殊的积分曲线称为上述积分曲线族的包络,在微分方程里,这些特殊的积分曲线所对应的解酒称为方程的奇解。

设给定单参数曲线族

(x,y,c)0

(1)

其中C是参数,(x,y,c)是x,y,c连续可微函数。

曲线族

(1)的包络是指这样的曲线,他本身并不包含在曲线族

(1)中,但过这曲线的每一点,有曲线族

(1)中的一条曲线和他在这点相切。

例如,单参数曲线族

(xc)2y2R2

(这里的R是常数,C是参数)表示圆心为(C,0)而半径为R的一族圆,此曲线族显然有包络

y=R和y=-R

(见图1)

3.包络跟奇解的关系

由奇解和包络的定义显然可知,若方程F(x,y,y')0的积分曲线族(即通解

所对应的曲线族)的包络如果存在,则必定是方程F(x,y,yJ0的奇解。

事实上,在积分曲线族包络上的点(x,y)处的x,y和y'(斜率)的值和在该点与包络相切的积分曲线上的x,y和y'满足方程F(x,y,y')0。

这就是说,包络是积分曲线。

其次,在包络的每一点,积分曲线族中都至少有一条曲线与包络相切。

因此,包络是奇解,由此可知,如果知道了微分方程F(x,y,y,)0的通积分,那么该通

积分的包络就是奇解

4.理论上证明C-判别曲线与P-判别曲线方法

但是,一般的曲线族并不一定有包络,例如同心圆族、平行直线族都是没有包络的,从而我们引出了C-判别曲线与P-判别曲线。

从奇解的定义可知,奇解是一种具有特殊几何意义的特解。

正如我们已见到的例子,在求解微分方程时只要注意一些例外情况就会得到这种特解.这些奇解都是由定义来判定的.但是由定义来判定奇解比较麻烦,下面介绍两种判别同时也是求奇解的方法:

由微分几何学可知,曲线族

(1)的包络包含在由下列方程组

(x,y,c)0

c(x,y,c)0

消去c得到所谓c-判别曲线•必须注意,在C-判别式曲线中有时出去包络外,还有其他曲线。

例1求直线族

xcosysinp0

(1)

的包络,这里的

是参数,P是常数。

解:

(1)对

求导,得到

xsinycos

0

(2)

为了从

(1),(

2)中消去

,将

(2)移项,

然后平方,有

22

xcos

22ysin

2xycossin

2(3)

 

(2)平方,又得

x2sin2

y2COS2

2xycossin0

(4)

将(3)

,(4)相加,

得到

2x

22

yp

(5)

容易检验,(5)是直线

(1)的包络(见图2)

例2求曲线族

(yc)2

3(x

c)2

0

(6)

的包络。

解:

将(6)

对C求导数。

得到

2(y

c)

-.?

3(x

3

c)20

yc

(x

c)20

(7)

为了从(6)和(7)消去C,将(7)代进(6),得

、423小

(xc)(xC)0

3

从x-c=0得到

(xc)3(xc)

20,

y=x

(8)

2

从xc20得到

3

2

(9)

yx-

9

因此,C-判别曲线包括两条曲线(8)和(9),容易检验直线y=x不是包络,而

2

直线yx2是包络(见图3)

9

值得注意的是,在c判别曲线中除了可能有的包络(即奇解)外,还可能是曲线族中奇点的集合,在奇点,曲线没有确定的切线•因此这种c判别曲线不是解;还可能是不与积分曲线族相切的曲线.

这里介绍另外一种求奇解的方法。

由存在唯一定理知道,如果F(x,y,y‘)关于x,y,y'连续可微,则只要上0

就能保证解的唯一性,因此,奇解(存在的话)必须同时满足下列方程

F(x,y,y)=0

F(x,y,y‘)

y

于是我们有下面结论:

方程

F(x,y,%0

dx

的奇解包含在由方程组

(10)

F(x,y,p)0

Fp(x,y,p)0

(11)

消去P而得到的曲线中,这里F(x,y,p)是x,y,p的连续可微函数,此曲线称为方程(10)的P-判别曲线。

P-判别曲线是否是方程的奇解,需要进一步的检验

例3求方程(包)2y21

0的奇解。

dx

解:

22

py10

2p0

消去P得到P-判别曲线

容易验证,此两直线都是方程的奇解。

因为容易求得原方程的通解为:

y=sin(x+c)

而y1是微分方程的解,且正好通解的包络。

2

例4求方程y2乂史dy的奇解

dxdx

 

解:

从y2xpp2

2x2p0

消去P得到卩_判别曲线

2

yx

但yx2不是方程的解,故此方程没有奇解

强调指出:

上面介绍的两种方法,只是提供求奇解的途径,所以C-判别曲线与

P-判别曲线是不是奇解,必须进行检验

补充:

4.1克莱罗微分方程

 

的方程,称为克莱罗微分方程,这里pdy,f(p)是P的连续可微函数,现在dx

我们进一步讨论:

将(12)

两边对x求导,并以鱼p代入,即得

dx

dy…dp

pxpf(p)-

dxdx

乎(xf"))0dx

如果亚

dx

0,则得到

P=C

(13)

yexf(c)

这里的C是任意常数,这就是(12)的通解

如果xf'(p)0,将它和(12)合并起来

(14)

xf(p)0yxpf(p)

消去P也得到方程的一个解。

注意,求得此解的过程真好与从通解(13)中的求包络的手续一样。

可以验证,此解的确是通解的包络,由此,我们知道,克莱罗微分方程的通解就是一直线族(在原方程以C代P即得),此直线族的包络就是方程的奇解。

例5:

求解方程yxp1p

解:

这就是克莱罗微分方程,因而它的通解就是

1

yxc-

c

x厶0

c

1

ycx-

c

中消去C,得到奇解

y24x

这方程的通解就是直线族,而奇解就是通解的包络

例6求一曲线,使其在其上的每一点的切线截割坐标轴而成的直角三角形(见(图例6)中的三角形OAB的面积都等于2

ab=4

解:

设所要求的曲线切线方程为

依题意有

而b鱼

adx

由上述三式消去a,b得

dx

4少

dx

x^y2dydx.dx

 

这是克莱罗微分方程,其通解为

 

这里c,—Ci为任意常数,易见此直线族的每一条直线都是满足题意的解。

在求曲线族的包络,亦即微分方程的奇解,为此,从

y2cc2x

1cx0

现在,可以引进奇解的概念:

微分方程的某一个解称为奇解,如果在这个解的每一点上至少还有方程的另外一个解的存在,也就是说奇解就是这样的一个解,在他上面的每一点至少有方程的两条积分曲线通过。

5.奇解的基本性质

5.1定理1设F(x,y,p)及其各一阶偏导数是(x,y,p)的连续函数,若方程

F(x,y,dy)有奇积分曲线,则它必包含在P-判别曲线(x,y,)0之中

dx

定理1的性质是,在满足定理中连续可微的条件下,奇积分曲线必须从P-

曲线中寻找,但是从P-判别曲线(x,y,)0中分解出来的一支或数支连续曲线

是否就是F(x,y,直)的奇积分曲线,尚需要进一步的依次验证:

(1)该支曲线

dx

是F(x,y,3)的积分曲线;

(2)该支曲线上每一点处至少还有F(x,y,鱼)的另

dxdx

外一条积分曲线经过,且两者在该点相切。

如果

(1)不成立,则该支曲线仅是一般的积分曲线,不是奇积分曲线,只有当

(1)和

(2)都成立时,该支曲线才是奇积分曲线,而他所对应的解才是奇解

例1重新考虑:

理)3y20

dx

解记p,则

dx

32^

F(x,y,p)py0

消去P,即得到P-判别曲线y=0,由本节开始时的讨论可知,他是奇解

 

2

F(x,y,p)py30

即从P-判别式得不到曲线。

看来似乎与前面的讨论有矛盾,其实不然,因为这

1

里上2y3,在y=0上不存在,而定理中假设—是连续的

p3y

例2求方程(賁y210的奇解

解从Fp2y210,—2p0消去P,得P-判别曲线y210,他分

P

解成两支y=-1和y=1,用直接代入的方法容易验证这两支都是方程的解,又因为

方程可以写为

乎厂y

dx

 

5

故积分得arcsinyxc

=sin(x+c),

由于C是任意常数,因此y

sin(xc)与ysin(xc)可以合并写成

ysin(xc)。

容易验证,对任意常数C,他的确是原方程的解,这是一簇正弦

曲线(如图),y1上的每一点都与积分曲线族ysin(xc)中的一条曲线相

例3求方程y2xy'y,2的奇解

解记F(x,y,p)y2xpp2。

F关于(x,y,p)连续可微,符合定理条件。

—2x2p0得P=X代入F(x,y,p)0中以消去P,得P-判别曲线P

yx20,,即yx2,,通过直接验证可知yx2,不是解,故原方程没有奇解,

5.2定理2从定义知道,一阶微分方程的通解的包络一定是奇解;反之,微分方程的奇解(若存在的话)也是微分方程通解的包络,因而,为了求微分方程的奇解,可以先求出它的通解,然后求通解的包络。

5.3定理3设(x,y,c)及其各一阶偏导数是(x,y,c)d连续函数,若

(x,y,c)=0有包络,,并且该包络是一条连续曲线,且有连续转动的切线,则

它必包含在C判别曲线(x,y)0之中,必须指出,从C判别曲线(x,y)0中

分解出来的一支或数支曲线是否是包络,尚需要进一步按包络的定义验证

例4求曲线(yc)2(xc)30的包络

解命(x,y,c)(yc)2(x3)30,则

-2(yc)3(xc)20

c

为了消去C,将第二式代入第一式,得

(xc)3(x

4

c9)

由x=c得y=x;再由xc-

9

4

y=x和yx27,容易看出,

0得yx—。

因此C判别曲线分解成两条直线

27

4

y=x不是包络,yx是包络

27

6.小结

综上所述,一阶常微分方程的奇解求解过程涉及了数学的许多理论知识与技巧,是个

综合性问题。

一阶常微分方程的奇解可以有多种求法,例如

C-判别法还有P—判别法,我

 

参考文献:

科学出版社

《常微分方程及其应用一方法、理论、建模、计算机》

《常微分方程》浙江大学出版社

《常微分方程》第三版高等教育出版

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1