ImageVerifierCode 换一换
格式:DOCX , 页数:13 ,大小:129.12KB ,
资源ID:6703695      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/6703695.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(一阶常微分方程的奇解.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

一阶常微分方程的奇解.docx

1、一阶常微分方程的奇解摘要 21.何谓奇解 22.奇解的产生 33. 包络跟奇解的关系 44.理论上证明C-判别曲线与P-判别曲线方法 54.1克莱罗微分方程 95.奇解的基本性质 125.1定理1 125.2定理 2 145.3定理 3 146.小结 14参考文献: 15一阶常微分方程的奇解摘要在常微分方程中, 我们知道方程的解可以有多种, 现在我们来讨论求奇解的 方法。我们看到某些微分方程, 会存在一些特殊的积分曲线, 他并不属于这方程 的积分曲线族, 但是,在这些特殊的积分曲线上的每一点处, 都有积分曲线族中 的一条曲线和他在此处相切。 从而我们引出了积分曲线族的包络, 而为了求微分 方程

2、的奇解,我们应先求出他的通解,然后求通解的包络。关键词:奇解,包络,C-判别式,P-判别式1. 何谓奇解设一阶隐式方程 F(x,y,y,) =0有一特解(x) , x j如果对每一点 ,在P点的任何一个领域内,方程F(x, y,y)=0都有一个不同于 的解在P点与 相切,则称 是微分方程的F(x,y,yJ=O的奇解定义:如果一个一阶微分方程的一个特解的积分曲线上的每一点都至少和这个微 分方程的不同的积分曲线相切,并且这相切的积分曲线在切点的任何邻域内都不 重合,则称这个特解为这个微分方程的奇解2.奇解的产生dydx先看一个例子,求方程(1)的解或与它等价的方程烹y3经分离变量后,可得(1)的通

3、解y 丄(x c)327谷易看出,y=0也是原方程的一个解。现在来研究这个解 y=0有什么特殊的地方。由图我们看到,在解y=0上的每一 点(X。,0)处相切,这种特殊的积分曲线y=0 称为奇积分曲线,他所对应的解就是奇 解,这就是奇解的产生。我们现在给出曲线族包络的定义某些微分方程,存在一些特殊的积分 曲线,会存在一些特殊的积分曲线,他并 不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有 积分曲线族中的一条曲线和他在此处相切。 在几何学里,这些特殊的积分曲线称 为上述积分曲线族的包络,在微分方程里,这些特殊的积分曲线所对应的解酒称 为方程的奇解。设给定单参数曲线族(x,y

4、,c) 0 (1)其中C是参数,(x,y,c)是x,y,c连续可微函数。曲线族(1)的包络是指 这样的曲线,他本身并不包含在曲线族(1)中,但过这曲线的每一点,有曲线 族(1)中的一条曲线和他在这点相切。例如,单参数曲线族(x c)2 y2 R2(这里的R是常数,C是参数)表示圆心为(C, 0)而半径为R的一族圆,此曲 线族显然有包络y=R 和 y=-R(见图1)3.包络跟奇解的关系由奇解和包络的定义显然可知,若方程 F(x,y,y) 0的积分曲线族(即通解所对应的曲线族)的包络如果存在,则必定是方程F(x,y,yJ 0的奇解。事实上, 在积分曲线族包络上的点(x,y )处的x,y和y(斜率)

5、的值和在该点与包络相 切的积分曲线上的x,y和y满足方程F(x,y, y) 0。这就是说,包络是积分曲 线。其次,在包络的每一点,积分曲线族中都至少有一条曲线与包络相切。 因此, 包络是奇解, 由此可知,如果知道了微分方程 F(x, y,y,) 0的通积分,那么该通积分的 包络就是奇解4.理论上证明C-判别曲线与P-判别曲线方法但是,一般的曲线族并不一定有包络, 例如同心圆族、 平行直线族都是没有 包络的,从而我们引出了 C-判别曲线与P-判别曲线。从奇解的定义可知, 奇解是一种具有特殊几何意义的特解。 正如我们已见到 的例子,在求解微分方程时只要注意一些例外情况就会得到这种特解 . 这些奇解

6、 都是由定义来判定的 . 但是由定义来判定奇解比较麻烦, 下面介绍两种判别同时 也是求奇解的方法:由微分几何学可知,曲线族( 1)的包络包含在由下列方程组(x,y,c) 0,c(x,y,c) 0消去c得到所谓c-判别曲线必须注意,在C-判别式曲线中有时出去包络外, 还有其他曲线。例 1 求直线族xcos ysin p 0 (1)的包络,这里的是参数, P 是常数。 解:将( 1)对求导,得到xsin ycos0(2)为了从( 1),(2)中消去,将( 2 )移项,然后平方,有22x cos22 y sin2xy cos sin2 ( 3)将(2)平方,又得x2si n2y2 COS22xyco

7、s sin 0(4)将(3),(4)相加,得到2 x2 2y p(5)容易检验,(5)是直线(1)的包络(见图2)例2求曲线族(y c)23(xc)20(6)的包络。解:将(6)对C求导数。得到2(yc)-.?3(x3c)2 0即y c(xc)2 0(7)为了从(6)和(7)消去C,将(7)代进(6),得, 、4 2 3 小(x c) (x C) 03从x-c=0得到(x c)3 (x c)2 0,y=x(8)2从x c 2 0得到32(9)y x -9因此,C-判别曲线包括两条曲线(8)和(9),容易检验直线y=x不是包络,而2直线y x 2是包络(见图3)9值得注意的是,在c判别曲线中除了

8、可能有的包络(即奇解)外,还可能是 曲线族中奇点的集合,在奇点,曲线没有确定的切线因此这种c判别曲线不 是解;还可能是不与积分曲线族相切的曲线.这里介绍另外一种求奇解的方法。由存在唯一定理知道,如果F(x,y,y)关于x,y, y连续可微,则只要上 0就能保证解的唯一性,因此,奇解(存在的话)必须同时满足下列方程F(x, y, y )=0F(x,y,y)y于是我们有下面结论:方程F(x,y,% 0dx的奇解包含在由方程组(10)F(x, y, p) 0Fp(x,y,p) 0(11)消去P而得到的曲线中,这里F (x,y,p )是x,y,p的连续可微函数,此曲线称 为方程(10)的P-判别曲线。

9、P-判别曲线是否是方程的奇解,需要进一步的检 验例3求方程(包)2 y2 10的奇解。dx解:从2 2p y 1 02p 0消去P得到P-判别曲线容易验证,此两直线都是方程的奇解。因为容易求得原方程的通解为:y=s in( x+c)而y 1是微分方程的解,且正好通解的包络。2例4求方程y 2乂史 dy的奇解dx dx解:从 y 2xp p22x 2p 0消去P得到卩_判别曲线2y x但y x2不是方程的解,故此方程没有奇解强调指出:上面介绍的两种方法,只是提供求奇解的途径,所以 C-判别曲线与P-判别曲线是不是奇解,必须进行检验补充:4.1克莱罗微分方程的方程,称为克莱罗微分方程,这里 p d

10、y, f (p)是P的连续可微函数,现在 dx我们进一步讨论:将(12)两边对x求导,并以鱼 p代入,即得dxdy dpp x p f (p)-dx dx即乎(x f) 0 dx如果亚dx0 ,则得到P=C(13)y ex f(c)这里的C是任意常数,这就是(12)的通解如果x f(p) 0,将它和(12)合并起来(14)x f (p) 0 y xp f (p)消去P也得到方程的一个解。注意,求得此解的过程真好与从通解(13)中的求 包络的手续一样。可以验证,此解的确是通解的包络,由此,我们知道,克莱罗 微分方程的通解就是一直线族(在原方程以C代P即得),此直线族的包络就是 方程的奇解。例5:

11、求解方程y xp 1 p解:这就是克莱罗微分方程,因而它的通解就是1y xc -c从x厶0c1y cx -c中消去C,得到奇解y2 4x这方程的通解就是直线族,而奇解就是通解的包络例6求一曲线,使其在其上的每一点的切线截割坐标轴而成的直角三角形(见 (图例6)中的三角形OAB的面积都等于2ab=4解:设所要求的曲线切线方程为依题意有而 b 鱼a dx由上述三式消去a,b得dx4少dxxy 2 dy dx . dx这是克莱罗微分方程,其通解为这里c ,Ci为任意常数,易见此直线族的每一条直线都是满足题意的解。现在求曲线族的包络,亦即微分方程的奇解,为此,从y 2c c2x1 cx 0现在,可以引

12、进奇解的概念:微分方程的某一个解称为奇解,如果在这个解 的每一点上至少还有方程的另外一个解的存在,也就是说奇解就是这样的一个 解,在他上面的每一点至少有方程的两条积分曲线通过。5.奇解的基本性质5.1定理1 设F(x, y, p)及其各一阶偏导数是(x, y, p)的连续函数,若方程F(x, y,dy)有奇积分曲线,则它必包含在 P-判别曲线(x,y,) 0之中dx定理1的性质是,在满足定理中连续可微的条件下,奇积分曲线必须从 P-曲线中寻找,但是从P-判别曲线(x, y,) 0中分解出来的一支或数支连续曲线是否就是F(x,y,直)的奇积分曲线,尚需要进一步的依次验证:(1)该支曲线dx是F(

13、x,y,3)的积分曲线;(2)该支曲线上每一点处至少还有F(x,y,鱼)的另dx dx外一条积分曲线经过,且两者在该点相切。如果(1)不成立,则该支曲线仅是 一般的积分曲线,不是奇积分曲线,只有当(1)和(2)都成立时,该支曲线才 是奇积分曲线,而他所对应的解才是奇解例1重新考虑:理)3 y2 0dx解记p,则dx3 2F(x, y, p) p y 0消去P,即得到P-判别曲线y=0,由本节开始时的讨论可知,他是奇解2F(x,y,p) p y3 0即从P-判别式得不到曲线。看来似乎与前面的讨论有矛盾,其实不然,因为这1里上 2y 3,在y=0上不存在,而定理中假设 是连续的p 3 y例2求方程

14、(賁y2 1 0的奇解解从F p2 y2 1 0, 2p 0消去P,得P-判别曲线y2 1 0,他分P解成两支y=-1和y=1,用直接代入的方法容易验证这两支都是方程的解, 又因为方程可以写为乎厂ydx5故积分得 arcsin y x c=sin( x+c),由于C是任意常数,因此ysin(x c)与y sin( x c)可以合并写成y sin(x c)。容易验证,对任意常数 C,他的确是原方程的解,这是一簇正弦曲线(如图),y 1上的每一点都与积分曲线族y sin(x c)中的一条曲线相例3求方程y 2xy y,2的奇解解 记F (x, y, p) y 2xp p2。F关于(x,y,p)连续

15、可微,符合定理条件。由 2x 2p 0得P=X代入F(x,y, p) 0中以消去P,得P-判别曲线 Py x2 0,,即y x2,,通过直接验证可知y x2,不是解,故原方程没有奇解,5.2定理2 从定义知道,一阶微分方程的通解的包络一定是奇解;反之,微 分方程的奇解(若存在的话)也是微分方程通解的包络,因而,为了求微分方程 的奇解,可以先求出它的通解,然后求通解的包络。5.3定理3 设(x, y,c)及其各一阶偏导数是(x,y,c ) d连续函数,若(x,y,c) =0有包络,并且该包络是一条连续曲线,且有连续转动的切线,则它必包含在C判别曲线(x,y) 0之中,必须指出,从C判别曲线(x,

16、 y) 0中分解出来的一支或数支曲线是否是包络,尚需要进一步按包络的定义验证例4 求曲线(y c)2 (x c)3 0的包络解命(x,y,c) (y c)2 (x 3)3 0,则- 2(y c) 3(x c)2 0c为了消去C,将第二式代入第一式,得(x c)3(x4c 9)由x=c得y=x;再由x c -94y=x和y x 27,容易看出,0得y x 。因此C判别曲线分解成两条直线274y=x不是包络,y x 是包络276.小结综上所述,一阶常微分方程的奇解求解过程涉及了数学的许多理论知识与技巧,是个综合性问题。一阶常微分方程的奇解可以有多种求法,例如C-判别法还有P判别法,我参考文献:科学出版社常微分方程及其应用一方法、理论、建模、计算机常微分方程 浙江大学出版社常微分方程 第三版 高等教育出版

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1