第二章弹性力学基础.docx

上传人:b****5 文档编号:6638952 上传时间:2023-01-08 格式:DOCX 页数:35 大小:591.92KB
下载 相关 举报
第二章弹性力学基础.docx_第1页
第1页 / 共35页
第二章弹性力学基础.docx_第2页
第2页 / 共35页
第二章弹性力学基础.docx_第3页
第3页 / 共35页
第二章弹性力学基础.docx_第4页
第4页 / 共35页
第二章弹性力学基础.docx_第5页
第5页 / 共35页
点击查看更多>>
下载资源
资源描述

第二章弹性力学基础.docx

《第二章弹性力学基础.docx》由会员分享,可在线阅读,更多相关《第二章弹性力学基础.docx(35页珍藏版)》请在冰豆网上搜索。

第二章弹性力学基础.docx

第二章弹性力学基础

第二章弹性力学基础

弹性力学又称弹性理论,它是固体力学的一个分支。

弹性力学任务是确定结构或机械零件在外载荷作用或温度改变等原因而发生的应力、位移和应变。

弹性力学与材料力学总的任务是相同的,但弹性力学研究的问题比材料力学要更加深刻和精确,并研究材料力学所不能解决的一些问题。

材料力学----研究杆状构件(长度>>高度和宽度)在拉压、剪切、弯曲、扭转作用下的应力和位移。

弹性力学----研究板壳、挡土墙、堤坝、地基等实体结

构。

对杆状构件作较精确的分析,也需用弹性力学。

结构力学----研究杆状构件所组成的结构。

例如桁架、刚架。

第一节弹性力学假设

在弹性力学中,所研究的问题主要是理想弹性体的线性问题,所谓理想弹性体的线性问题,是指符合以下假定的物体。

1.假设物体是线弹性的

假定物体服从虎克定律,即应变与引起该应变的应力成正比,反映这一比例尖系的常数,就是弹性常数。

即该比例矢系不随应力、应变的大小和符号而变。

由材料力学已知:

脆性材料的物体:

在应力?

比例极限以前,可作为近似的完全弹性体;

韧性(塑性)材料的物体:

在应力V屈服极限以前,可作为近似的完全弹性体。

这个假定,使得物体在任意瞬时的应变将完全取决于该瞬时物体所受到的外力或温度变化等因素,而与加载的历史和加载顺序无尖。

2.假设物体是连续性的假设整个物体的体积都被该物体介质完全充满,不留下任何空隙。

有了这一假定决定了应力、应变、位移是连续的,可用坐标的连续函数来表示他们的变化规律。

注:

实际上,一切物体都是由微粒组成的,都不能符合该假定。

但是由于物体粒子的尺寸以及相邻粒子间的距离,都比物体自己本身的尺寸小得很多,因此连续性假设不会引起显着的误差。

3.假设物体是均匀性、各向同性的

整个物体是由同一材料组成的。

这样整个物体的所有各部分才具有

相同的弹性,因而物体的弹性常数不随坐标而变化,可以取出该物体的任意一小部分来加以分析,然后把分析所得结果应用于整个物体。

各向同性是指物体内一点的弹性在所的各个方向上都是相同的,故物体的弹性常数不随方向而变化。

对于非晶体材料,是完全符合这一假定。

而由木材,竹材等做成的构件,就不能作为各向同性体来研究;钢材构件基本上是各向同性的。

弹性常数?

凡是符合以上三个假定的物体,就称为理想弹性体°

4.假设物体的位移和应变是微小的假定物体在载荷或温度变化等外界因素的作用下所产生的位移远小于物体原来的尺寸,应变分量和转角都远小于1。

因此

1在建立物体变形以后的平衡方程时,可用变形前的尺寸代替变形后的尺寸,而不至于引起显著的误差。

2在研究物体的应变和位移时,其二次幕或乘积,可略去不计。

按照以上四个基本假设研究物体中的应力、应变和位移问题的弹性力学,称为线性弹性力学。

第二节外力、应力、应变和位移的符

号禾[]记号

介绍弹性力学中常用的基本概念:

外力、应力、应变和

位移。

一、外力

作用在物体上的外力,可分为两类:

体积力和表面力。

1.体积力(简称体力)

体积力分布在物体体积内部的力。

例如重力和惯性力。

注:

1在物体内部各点的体积力是不相同的;

2任一点P处的单位体积内所作用的体积力,沿着直角坐标轴x,y,z

三个方向的投影X,Y,Z,称为该物体在P点的体积力分量。

体积力只与质量成正比,为位置坐标的函数。

一般表示为

Qv—XYZt

规定:

体积力分量X,Y,Z以坐标轴的正方向为正。

量纲:

〔力〕/〔长度〕3

2.表面力(简称面力)

作用在物体表面上的外力。

例如:

压力容器所受到的内压、水坝所受的静水压力、

物体与物体之间接触压力及摩擦力等等注:

①物体在其表面各点的表面力是不相同的;

②在物体表面上任一点P处的单位表面上的表面力,沿着直角坐标轴x,y,z三个方向的投影X,Y,Z,称为该物体在P点的表面力分量。

通常情况下,表面力是位置坐标的函数。

一般用下式来表示

————J

Qs=lX丫Z]

规定:

X,Y,Z以坐标轴的正方向为正(弹性力学的规定)。

量纲:

〔力〕/〔长度〕2

二、应力(stress)

弹性体在外力作用下,其内部将要产生应力。

某一点P处的应力状态:

取PA=dx,PB=dy5PC=dz的一个无穷小的正六面体,如图2-1所示。

将一个面上的应力分解为一个正应力和两个剪应力,

分别与三个坐标轴平行。

即每个面上的应力都可用三个应力

分量来表示。

z

0—

图2・1直角坐标系下的应力分量

正应力(normalstress:

用a表示。

角标表示正应力的作用面和作用方向。

例如a是作用在垂直x轴的面上,同时沿x轴方向的正应力。

剪应力(shearstress)用T表示,加上两个角标。

第一个角标表示作用面垂直哪一个坐标轴,第二个角标表示作用方

向沿哪一个坐标轴。

例如%是作用在垂直X轴的面上、而

沿y轴方向的剪应力。

应力分量的符号规定

(1)当某一截面的外法线与坐标轴正方向相同,称为正面

(如上面、右面和前面)。

正面上的应力分量以沿坐标轴正方向为正,沿坐标轴的负方向为负。

(2)当某一截面的外法线与坐标轴负方向相同,称为负面

(如下面、左面和后面)。

负面上的应力分量以沿坐标轴的负方向为正,沿坐标轴的正方向为负。

(1)图中所示的应力分量全部为正(黑色为正面应力,红

色为负面应力);

(2)对于正应力,其符号规定与材料力学中的规定相同(拉

应力为正,压应力为负);

(3)对于剪应力,其符号规定与材料力学中的规定不完全

相同;

(4)六个剪应力存在互等尖系5即:

T=1T=ET=T

xyyx,yzzy,zxxz

(5)可以证明:

如果:

x5「y,二z,xy5yz八zx这六个

量在p点是已知的,就可以求得经过该点的任何面上的正应力和剪应力,因此,这六个量可以完全确定该点的应力状态,它们就称为在该点的应力分量。

一般说来,弹性体内各点的应力状态都不相同,因此,

描述弹性体内应力状态的上述六个应力分量并不是常量,而

是坐标x、y、z的函数

六个应力分量的总体,可以用一个列向量来表示:

长度的改变「一正应变角度的改变「…剪应变

1.正应变

线段的单位长度的伸缩,用;来表示。

例如;x--・X方向

的线段PA的正应变

规定:

以伸长为正,缩短为负。

2.剪应变

各线段之间的直角改变量,以弧度来表示。

符号为。

例如

yz---y与Z两方向(即PB与PC)的线段之间的直角改变。

规定:

以直角变小为正,变大时为负。

注:

物体内任一点的应变有六个分量:

;X3y3;Z3xy3yz,ZX

一般说来,弹性体内各点的应变都不相同,性体内

应变的上述六个应变分量并不是常量'Z的函数。

因此,描述弹而

是坐标x、y、

六个应变分量的总体,可以用一个列向量来表示:

{4Z

y

X

y

IYl

yz

zx

是无量纲的物理量。

vy

xyyzzx

四、位移(displacement)

-—位置的移动。

物体内任意一点的位移用它在

影U、V、W表示---位移分量。

规定:

以沿坐标轴正方向为正,

量纲:

〔长度〕

x,y,z三个坐标轴上的投

沿坐标轴的负方向为负0

 

第三节弹性力学中的两种平面问题

任何一个弹性体都是空间物体,一般的外力都是空间力系。

严格来

说,任何一个实际的弹性力学都是三维空间问题。

但是,如果所研究的弹性体具有某种特殊的几何形状,并且承受是某种特殊的外力,就可以把空间问题简化为近似的平面问题。

这样的处理,分析和计算的工作量减少,而计算结果仍满足工程上对精度的要求。

一、平面应力问题(planestress)

1.特点

(1)几何形状上―等厚度的平面薄板(其厚度方向的尺寸远比其它两个方向的尺寸小得多,可视为一薄板);

(2)受力状态上---只在板边上受有平行于板面、并且不沿厚度变化的表面力和体积力。

例:

深梁(短而高)

2•应力

设薄板的厚度为t。

以薄板的中面为xy面,垂直于中面

的任意直线为Z轴。

图2・2

因为在处的两个外表面上不受任何载荷。

2

Z=_■处有:

二z「vzrzx=0。

一2

另外,由于Z方向的尺寸很小,外力又不沿厚度变化,则

可以认为在整个薄版的所有各点都有

aT

zyzZ

又由剪应力互等矢系,有

zyxz

而其余的三个应力分量wxy---平行于xy面,都是x,y的函数,与z无尖。

3•应变与位移

与三个应力分量二X卢y・宏)对应的独立应变分量

名名丫

xjyjxy

独立的位移分量

U,V

它们也都是X,y的函数,与z无尖。

注:

另外,薄板在z方向可以任意变形,故沿z方向的应变分量;z和位移

W并不为零。

匚Z=0,而;z=0

・、平面应变问题(planestrain)

1.特点

(1)几何形状上---是一个近似等截面的长柱体,其长度比横截面的尺寸大的很多;

(2)受力状态上一-只受有平行于横截面、且沿纵向长度均匀分布的面力和体力。

例:

重力水坝、隧道和挡土墙

2.变形情况

设长柱体的任一横截面为xy面,任意纵线(沿长度方

向)为z轴。

P^lOQ

则所有一切应力分量、应变分量和位移分量都不沿Z

方向变化,而只是x和y函数。

此外,在这一情况下,由于任一横截面都

可以作为是对称面,所有各点都只会有x和y

方向的移动,而不会有z方向的位移,即w=0,由此得

又因各薄板的两侧面仍为平面,故与Z方向有尖的两个剪应

yzzx由对称条件得

T=T=yzzx根据剪应力互等的尖系,

独立的应变分量

CT<1

X,y?

xy

u,

z无矢。

独立的应力分量

独立的位移分量

它们都是x,y的函数,与

注:

(1)长由于Z方向上的变形被阻止了。

所以,

(2)许多工程问题,例如隧道、挡土墙等,并不完全符

合无限长柱形体的条件。

但实践证明,对于离开两端较远之处,按平面问题

进行分析,其结果可满足工程上的精度要求。

第四节平面问题的平衡方程

—应力与体积力之间的矢系

在弹性力学里进行分析问题,要从三个方面来考虑:

静力学、几何学和物理学°首先考虑平面问题的静力学方面,根据平衡条件来确定平衡微分方程。

—、平衡方程一■应力与体积力之间的平衡尖系

从薄板(或长柱体)取出一个微小的单元体,它在X和

y方向的的尺寸分别为

dx和dy

"y

y-dy

y

:

v

ctrD丫u4

TB

xy*

I「dx

X

dG

rxxdx

yx

dx

图2.4

应力分量是位置坐标x,y的函数,故作用在左右、上下

 

因为六面体是微小的,所以各面上的所受的应力可以认为是均与分布

的,作用在各对应面的中心。

单元体所受的体积力,也是均与分布的,作用在它的体积中心。

列方程:

以x坐标轴为投影轴,列出投影的平衡方程刀Fx=O,得

-yxtdxXtdxdy二0

化简以后9两边除以tdxdy‘得

同理,由刀Fy=O,得

C

二ytdx0xyXvdx)tdy点X

-xytdyYtdxdy=0

整理得:

即平面问题的平衡微分方程为:

CcrCx

x丝X=0

L■

xy

cT8cr

xyyY二0

rxL>>

xy

上式表示应力分量与体力之间的尖系,称为平面问题的平衡

 

微分方程。

上式中,未知量二X,几何条件和物理条件。

(1)由刀Mo=0,得

(xyxydx)dytcx

」dy)dx

y

整理得:

二y,静定的问题,还必须考虑

xydyt乎

2

dy

yxClXt0

yp

是超

 

dCT

dCT

+Iyx

Xy2x

yxdy

Ow

略去无穷小量,得

xy_.yx

即为剪应力互等矢系。

(2)对于平面应变问题,在图示的单元上,还有作用于前后两个面的正应力匚Z,但由于它们自成平衡,完全不影响上面平衡方程的建立,所以上面的平衡方程对于两种平面问题都适用。

(3)对于三维问题,其平衡方程为

CT

X+

yX+

zx

X

y

Z

dT

Sa

CT

xy

+

y

+

zy十

X

y

Z

dT

dT

ccr

xz

+

yz

+

z+

X

y

Z

第五节平面问题的几何方程

—应变与位移之间的尖系

间的尖系,即平面问题的几何方程。

位移

经过弹性体内任意一点P,沿x和y轴的方向取两个微

小长度的线段:

PA=dx,PB=dy。

假定弹性体受力之后,有

线段PA的正应变;x为

线段PA的伸缩,是更高一阶微小的,因此略去不计线段PB的正应变“为

dV

(V—dy)-v

石V

dy

三、剪应变■一线段PA与PB之间的直角改变xy:

由y方向的位移y所引起的,即x方向的线段PA的转角a由X方向的位移"所引起的,即y方向的线段PB的转角B线段PA的转角a

(使直角变小)

dxx

线段PB的转角B

(使直角变小)

7

xy

综合到一起,得

Vxy

称之为平面问题的几何方程。

注:

(1)上式对两种平面问题都适用

(2)当物体的位移分量完全确定时,由上式可完全确定应变

分量;

但当物体的应变分量完全确定时,位移分量却不能完全确定。

(3)变形协调方程(相容方程)

由几何方程有

32

「x_:

Ufu

2

y;Xy_x;yy

;J・3

y:

V

一2二2

xyx

两式相加,得

乎Zc2£兔

xy+

X2C6

所以,平面问题变形协调方程(相容方程)为

•2•2.2

999

+=xy

22

JL、J

yxxy

应变分量;x,;y,xy必须满足该方程,才能保证位移

的存在。

如果任意选取的函数;X,;y,xy不满足变形协调方程,那么由三个几何方程中的任意两个求出的位移分量,将与第三个

几何方程不相容。

这表示,变形后的物体不再是连续的,而将发生某些部分相互脫离/互相侵入的现象。

(4)为了应用的方便,几何方程可以写成矩阵的形式:

iYIy

;刃丿UV

■■■■■

鬥dx・

①对于三维问题,几何方程

 

V

X

II

y

§

IYI

yz

Lzx

IEx

■Z

变形协调方程(相容方程)可见相尖参考文献

例题:

是说明下列应变状态是否可能?

1./C(x2y2)

2

厂cy

xy二2cxy

x二C(XV2)

2

厂cy

x厂2cxy2

.2.乎Z匕理

证:

1.-f=2c,

y

代入变形协调方程,

所以为真实应变

2•

9

2・艺2c

7

代入变形协调方程,

所以为非真实应变

r=0,

2c

X

左边二右边

dPz

2xy

—T=0,

X

4cy

左边工右边

试证当三个应变分量确定时,位移分量却不能完全确定证:

令三个应变分量为零,即

;X=;y=xy=O(a)

由几何方程,可以求出相应的位移分量

-uVU

0505

0

(b)

XVV

X

将前二式分别对x及y积分,得

旷f(M,vg(X)

(c)

其中f、g为任意函数。

代入(b)

中的第三式,得

(d)

df(y)dq(x)

dydx

y的函数二x的函数

故只可能两边都等于同一个常数

f(y)=u°wy,g(x)二v。

_wx

其中U。

,V。

,W都是任意常数。

代入(c),得位移分量

上式表示的位移是三个应变分量为零时的位移,也就是刚体位移。

实际上,u。

,V。

分别是物体沿x轴及y轴方向的刚体位移,而w是物体绕z轴的刚体转动。

既然物体在应变为零时可以有任意的刚体位移。

可见,

当物体发生一定的形变时,由于约束条件不同,它可能具有

不同的刚体位移,因而他的唯一并不是完全确定。

在平面问题中,常数U。

,V。

,w的任意性就反应位移的不确定性。

而为了完全确定位移,就必须有三个适当的约束条件来确定这三个常数。

第六节平面问题的物理方程

—应力与应变之间的尖系

考虑平面问题中的物理方程,导出应变与应力之间的矢系,即平面问题中的物理方程。

对于各向同性的完全弹性体,其应力分量和应变分量之间的矢系为线性尖系,即服从广义虎克定律,记为

XyG-

yz

v

zx

式中E----

1

1

Gzx

拉压弹性模量(弹性模量)

侧向收缩系数(泊松比,泊松系数)

剪切弹性模量

三者的尖系

平面应力问题

yzzx

yzzx

平面应力问题物理方程

E-

扑2(1J

■■■■■■■■■■■■■■

xy〔

—T

Exy

是由二x和二y确定,不是独立的应力分量。

解出应力,得

1

I/T

Cx+r

S)

y

1

1

xy

E(卩名

+sy)

\X

Ey一E1-J

2(1+j)xy-La22xy

写成矩阵的形式

 

fa1

E

1-P2

0g

vX

0py

1A!

Y

—Ixy

2

 

其中

-1

I1»0

 

〔D丄El1

1_4

1r

JOO

称为平面应力问题弹性矩阵

、平面应变问题

=0,Y=0,7

zyz

0

yzzx

由广义虎克定律得

把上式代入广义虎克定律得

1

1

Iy

xy

把平面应力问题物理方程中的

y)

(y1-1

2(1

r

xy

xy

 

则得平面应变问题的物理方程为

/-1D;/

小E(1-、厂

I

〔D】

10

(1」)(1・2」)1-

j

0

!

o

2(1-卩)一

称为平面应变问题弹性矩阵。

第七节边界条件

对于弹性力学平面问题,有八个未知量,推导出了八个基本方程,因此在适当的边界条件下,从八个基本方程求解未知函数是可能的。

1.位移边界条件

物体在全部边界上的位移分量是已知的,即在边界上,

Us,V二Vs

式中Us,必是在边界上坐标的已知函数。

2.应力边界条件

平衡方程描述的是应力与体积力的平衡矢系,而应力边

界条件描述的是应力与表面力之间的平衡尖系。

如图2-6(a)所示,一个弹性体边界为Si上作用表面力

X,Y,在固定边界S2上u和V都等于0。

y

(b)

图2-6应力边界条件

把图2-6(a)的微元体ABD取出得图2-6(b)°设边界AB

的外法线n与x轴的夹角为9,AB长度为ds°则直角边

AD=dssin9,DB=dscos9,由平衡条件Fx二0,得

Xtds-xtcosds・yxtsin,dsX1cosdssinAdst=

略去上式中包含高阶微量ds平方项,两

(rx)sCOS(yxhSi/7=X

同理,由VFy二0,得

(xy)scoseyhsin=Y

所以,应力边界条件为:

仁x)sC03+Cyx)sSi冲二X(xy)sCOSCy)sSiflT=Y

如果弹性体处于平衡状态,则在内部应满足平衡微分方程,同时,在边界上应满足应力边界条件。

注意:

实际上弹性力学边界条件有三种:

1•应力边界

 

条件;2•位移边界条件;3•混合边界条件

例题:

确定图示平面问题的边界S】和S2的应力边界条件

n2q

bi

1

"1

〒a

:

3

厂i

s2

y

\

S!

»1

q

J1

解:

①边界Si:

X=Y=O,二-0

所以有cosA-1,sin二=0,代入应力边界条件,得

(,x)sT(yx)s0

(xy)sTCy)s・0=

故得

(*x)s=°?

(xy2

②边界S2:

X=0,丫二q,/=90°

所以有cost=0,si=1,代入应力边界条件,得

(「x)s•0(yx)sT=0(xy)s0Cy)ST二C|

故得Cy肚丫二4'(yx>s°

例题:

图示三角形水坝,试写出OA面的应力边界条件

解:

边界oa面:

x=gy,丫二0,

所以有cos:

=-13sin==0,代入应力边界条件,得

Cx)s•(-1)(yx)s•0=X=gy

Cxy)s•(T)+(Cy)s*0=V=0故得(rx)S…©y,

o-cK

o-cz

aL

例题:

确定图示结构AB面(连杆支承面)的边界条件(混合边界条件)。

解:

边界AB面的应力边界条件:

X二?

,Y二0,二・0所以有cos-=1,si=0,代

入应力边界条件第二个方程,得

(xy)s=0

则边界AB面在x方向有位移边界条件

u二Us=0

第八节圣维南原理

圣维南原理是法国科学家圣维南于1855年首先提出的。

我们在求解弹性力学问题时,对应一定的边界条件,得出相应的解答,表示一定的应力状态。

如果边界条件改变,则将得出不同的应力分布状态。

当外

有时

部载荷比较复杂时,要使应力分量完全满足边界条件是比较困难的,只好将边界面

上的力系进行适当的变换,从而将对问题的解答有所影响,圣维南原理回答了这个影响的范围。

如图2-8(a)表示用钳夹住一个杆件,即相当于在这杆件

上作用于一个平衡力系,如图2-8(b)所示。

由生产实践和

理论上都可以说明,无论作用力怎样大(如把杆件钳断),

平衡力在杆件内所引起的应力都局限于A部的附近区域,所

引起的应力随着离开A部区域,而很快减小。

即在用虚线表示的区域A以外,几乎没有应力产生。

 

(b)

图2-8

圣维南原理(局部影响原理)可以表述如下:

如果物体

一小部分边界上的力系,用一个静力等效(合力相等,合力偶矩相等)的力系代替,那么在新的力系作用下,仅在加载区域临近应力有改变,而距离该区域较远处,应力分布几乎没有影响。

有了上面的认识,我们研究几种静力等效情况。

如图2-9所示的情

况,如果把一端或两端的拉力P变换为静力等效

的力P/2,或均匀分布的拉力P/A(A为杆件的横截面积),那么只有图中虚

线部分的应力分布有显着的改变,

而其余部

分所受的影响可以不计。

这就是说,在图

2-9所示的四种情

况下,离开两端较远的部位的应力分布并没有显着的差别。

(b)

P/2

H1

HP/Agj

(c)

P/2

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1