ImageVerifierCode 换一换
格式:DOCX , 页数:35 ,大小:591.92KB ,
资源ID:6638952      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/6638952.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(第二章弹性力学基础.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

第二章弹性力学基础.docx

1、第二章弹性力学基础第二章弹性力学基础弹性力学又称弹性理论,它是固体力学的一个分支。弹性力学任务 是确定结构或机械零件在外载荷作用或温度改变等原因而发生的应力、位 移和应变。弹性力学与材料力学总的任务是相同的,但弹性力学研究的问题比 材料力学要更加深刻和精确,并研究材料力学所不能解决的一些问题。材料力学-研究杆状构件(长度 高度和宽度)在拉 压、剪切、弯曲、扭转作用下的应力和位移。弹性力学-研究板壳、挡土墙、堤坝、地基等实体结构。对杆状构件作较精确的分析,也需用弹性力学。结构力学-研究杆状构件所组成的结构。例如桁架、 刚架。第一节弹性力学假设在弹性力学中,所研究的问题主要是理想弹性体的线性问题,

2、所谓 理想弹性体的线性问题,是指符合以下假定的物 体。1.假设物体是线弹性的假定物体服从虎克定律,即应变与引起该应变的应力成 正比,反映 这一比例尖系的常数,就是弹性常数。即该比例 矢系不随应力、应变的大小 和符号而变。由材料力学已知:脆性材料的物体:在 应力?比例极限以前,可作为近似 的完全弹性 体;韧性(塑性)材料的物体:在应力V屈服极限以前,可作为近似的 完全弹性体。这个假定,使得物体在任意瞬时的应变将完全取决于该瞬时物体所 受到的外力或温度变化等因素,而与加载的历史和加载顺序无尖。2.假设物体是连续性的假设整个物体的体积都被该物体介质完全充 满,不留下任何空隙。有了这一假定决定了应力、

3、应变、位移是连续 的,可用坐标的连续函数来表示他们的变化规律。注:实际上,一切物体都是由微粒组成的,都不能符合该假定。但是 由于物体粒子的尺寸以及相邻粒子间的距离,都比物体自己本身的尺寸小得 很多,因此连续性假设不会引起显着的误差。3.假设物体是均匀性、各向同性的整个物体是由同一材料组成的。这样整个物体的所有各部分才具有相同的弹性,因而物体的弹性常数不随坐标而变 化,可以取出该物体的任 意一小部分来加以分析,然后把分 析所得结果应用于整个物体。各向同性是指物体内一点的弹性在所的各个方向上都 是相同的,故物 体的弹性常数不随方向而变化。对于非晶体材料,是完全符合这一假定。而由木材,竹 材等做成的

4、构 件,就不能作为各向同性体来研究;钢材构件 基本上是各向同性的。弹性常数?凡是符合以上三个假定的物体,就称为 理想弹性体4.假设物体的位移和应变是微小的假定物体在载荷或温度变化等外 界因素的作用下所产生的位移远小于物体原来的尺寸,应变分量和转角都 远小于1。因此1在建立物体变形以后的平衡方程时,可用变形前的尺寸代替变形 后的尺寸,而不至于引起显著的误差。2在研究物体的应变和位移时,其二次幕或乘积,可略去不计。按照以上四个基本假设研究物体中的应力、应变和位移问题的弹性 力学,称为线性弹性力学。第二节外力、应力、应变和位移的符号禾记号介绍弹性力学中常用的基本概念: 外力、应力、应变和位移。一、外

5、力作用在物体上的外力,可分为两类:体积力和表面力。1.体积力(简称体力)体积力分布在物体体积内部的力。例如重力和惯性力。注:1在物体内部各点的体积力是不相同的;2任一点P处的单位体积内所作用的体积力,沿着直角坐标轴x,y,z三个方向的投影X,Y,Z,称为该物体在P点的体积力分量。体积力只与质量成正比,为位置坐标的函数。一般表示为QvX YZt规定:体积力分量X,Y,Z以坐标轴的正方向为正。量纲:力/长度32.表面力(简称面力)作用在物体表面上的外力。例如:压力容器所受到的内压、水坝所受的静水压力、物体与物体之间接触压力及摩擦力等等注:物体在其表面各点的表面力是不相同的; 在物体表面上任一点P处

6、的单位表面上的表面力,沿 着直角坐标轴 x,y,z三个方向的投影X,Y,Z,称为该物体在P点的表面力分量。通常情况下,表面力是位置坐标的函数。一般用下式来表示 JQs= lX 丫 Z规定:X, Y ,Z以坐标轴的正方向为正(弹性力学的规定)。量纲:力/长度2二、应力(stress)弹性体在外力作用下,其内部将要产生应力。某一点P处的应力状态:取PA=dx,PB=dy 5 PC=dz的一个无穷小的 正六面体,如图 2-1所示。将一个面上的应力分解为一个正应力和两个剪应力,分别与三个坐标轴平行。 即每个面上的应力都可用三个应力分量来表示。z0图21直角坐标系下的应力分量正应力(normal str

7、ess :用a表示。角标表示正应力的 作用面和作用 方向。例如a是作用在垂直x轴的面上,同时沿x轴方向的正应力。剪应力(shear stress)用T表示,加上两个角标。第一个 角标表示作用 面垂直哪一个坐标轴, 第二个角标表示作用方向沿哪一个坐标轴。例如 是作用在垂直X轴的面上、而沿y轴方向的剪应力。应力分量的符号规定(1)当某一截面的外法线与坐标轴正方向相同,称为正面(如上面、右面和前面)。正面上的应力分量以沿坐标轴 正 方向为正,沿坐标轴的负方向为负。(2)当某一截面的外法线与坐标轴负方向相同,称为负面(如下面、左面和后面)。负面上的应力分量以沿坐标轴的 负方向为正,沿坐标轴的正方向为负

8、。(1)图中所示的应力分量全部为正(黑色为正面应力,红色为负面应力);(2)对于正应力,其符号规定与材料力学中的规定相同 (拉应力为正,压应力为负);(3)对于剪应力,其符号规定与材料力学中的规定不完全相同;(4)六个剪应力存在互等尖系5即:T=1 T=E T = Txy yx , yz zy , zx xz(5 )可以证明:如果:x 5y,二z,xy 5 yz八zx这六个量在p点是已知的,就可以求得经过该点的任何面上的正应 力和剪应力,因 此,这六个量可以完全确定该点的应力状态,它们就称为在该点的应力分 量。一般说来,弹性体内各点的应力状态都不相同,因此,描述弹性体内应力状态的上述六个应力分

9、量并不是常量, 而是坐标x、y、z的函数六个应力分量的总体,可以用一个列向量来表示:长度的改变一正应变角度的改变剪应变1.正应变线段的单位长度的伸缩,用 ;来表示。 例如;x-X方向的线段PA的正应变规定:以伸长为正,缩短为负。2.剪应变各线段之间的直角改变量,以弧度来表示。符号为 。例如yz-y与Z两方向(即PB与PC)的线段之间的直角改变。规定:以直角变小为正,变大时为负。注:物体内任一点的应变有六个分量:;X 3 y 3 ; Z 3 xy 3 yz , ZX一般说来,弹性体内各点的应变都不相同,性体内应变的上述六个应变分量并不是常量Z的函数。因此,描述弹而是坐标x、y、六个应变分量的总体

10、,可以用一个列向量来表示:4ZyXyI Ylyzzx是无量纲的物理量。vyxy yz zx四、位移(displacement)-位置的移动。物体内任意一点的位移用它在影U、V、W表示-位移分量。规定:以沿坐标轴正方向为正,量纲:长度x,y,z三个坐标轴上的投沿坐标轴的负方向为负0第三节 弹性力学中的两种平面问题任何一个弹性体都是空间物体,一般的外力都是空间力 系。严格来说,任何一个实际的弹性力学都是三维空间问题。但是,如果所研究的弹 性体具有某种特殊的几何形状,并且承受是某种特殊的外力,就可以把 空间问题简化为近似的平面问题。这样的处理,分析和计算的工作量减 少,而计算结果仍满足工程上对精度的

11、要求。一、平面应力问题(plane stress)1.特点(1)几何形状上等厚度的平面薄板(其厚度方向的尺 寸远比其 它两个方向的尺寸小得多,可视为一薄板);(2)受力状态上-只在板边上受有平行于板面、并且不 沿厚度变化 的表面力和体积力。例:深梁(短而高)2 应力设薄板的厚度为t。以薄板的中面为xy面,垂直于中面的任意直线为Z轴。图22因为在处的两个外表面上不受任何载荷。2Z=_ 处有:二 zvz rzx= 0。一 2另外,由于Z方向的尺寸很小,外力又不沿厚度变化, 则可以认为在整个薄版的所有各点都有a Tz yz Z又由剪应力互等矢系,有zy xz而其余的三个应力分量wxy-平行于xy面,

12、都是x,y的函数,与z无尖。3 应变与位移与三个应力分量二X卢y宏)对应的独立应变分量名名丫xjyjxy独立的位移分量U, V它们也都是X , y的函数,与z无尖。注:另外,薄板在z方向可以任意变形,故沿z方向的应变分量;z和位移W并不为零。即匚 Z= 0,而;z= 0、平面应变问题(plane strain)1.特点(1)几何形状上-是一个近似等截面的长柱体,其长度比横截面 的尺寸大的很多;(2)受力状态上一-只受有平行于横截面、且沿纵向长度 均匀分布的 面力和体力。例:重力水坝、隧道和挡土墙2.变形情况设长柱体的任一横截面为 xy面,任意纵线(沿长度方向)为z轴。Pl O Q则所有一切应力

13、分量、应变分量和位移分量都不沿 Z方向变化,而只是x和y函数。此外,在这一情况下,由于任一横截面都可以作为是对称面,所有各点都只会有 x和y方向的移动,而不会有z方向的位移,即w=0,由此得又因各薄板的两侧面仍为平面, 故与 Z方向有尖的两个剪应yz zx 由对称条件得T = T = y z z x 根据剪应力互等的尖系,独立的应变分量CT1X, y? xyu,z无矢。独立的应力分量独立的位移分量它们都是x,y的函数,与注:(1)长由于Z方向上的变形被阻止了。所以,(2)许多工程问题,例如隧道、挡土墙等,并不完全符合无限长柱形体的条件。但实践证明,对于离开两端较远之 处,按平面问题进行分析,其

14、结果可满足工程上的精度要求。第四节平面问题的平衡方程应力与体积力之间的矢系在弹性力学里进行分析问题,要从三个方面来考虑:静力学、几何学 和物理学首先考虑平面问题的静力学方面,根据平衡条件来确定平衡微分 方程。、平衡方程一应力与体积力之间的平衡尖系从薄板(或长柱体)取出一个微小的单元体,它在 X和y方向的的尺寸分别为dx 和 dyyy-dyy:vct rD 丫 u 4T Bxy*I dxXdGrxxdxyxdx图2.4应力分量是位置坐标 x,y的函数,故作用在左右、上下因为六面体是微小的,所以各面上的所受的应力可以认为是均与分布的,作用在各对应面的中心。单元体所受的体积力,也是均与分布的,作用在

15、它的体 积中心。列方程:以x坐标轴为投影轴,列出投影的平衡方程刀 Fx=O,得-yxtdx Xtdxdy 二 0化简以后9两边除以tdxdy 得同理,由刀Fy=O,得C xy上式表示应力分量与体力之间的尖系,称为平面问题 的平衡微分方程。上式中,未知量二X, 几何条件和物理条件。(1)由刀Mo=0,得(xyxydx)dy t cxdy)dxy整理得:二y, 静定的问题,还必须考虑xydy t 乎2dyyxClX t 0yp是超dCTdCT+ I yxXy 2xyx dyO w略去无穷小量,得xy _. yx即为剪应力互等矢系。(2)对于平面应变问题,在图示的单元上,还有作用于前后两个面的正 应

16、力匚Z,但由于它们自成平衡,完全不影响上面平衡方程的建立,所以 上面的平衡方程对于两种平面问题都适用。(3)对于三维问题,其平衡方程为CTX +yX +zxXyZdTSaCTxy+y+zy十XyZdTdTccrxz+yz+z +XyZ第五节平面问题的几何方程应变与位移之间的尖系间的尖系,即平面问题的几何方程。位移经过弹性体内任意一点P,沿x和y轴的方向取两个微小长度的线段:PA=dx,PB=dy。假定弹性体受力之后,有线段PA的正应变;x为线段PA的伸缩,是更高一阶微小的,因此略去不计线段PB的正应变“为dV(V dy) - v石Vdy三、剪应变一线段PA与PB之间的直角改变xy:由y方向的位

17、移y所 引起的,即x方向的线段PA的转角a由X方向的位移所引起的,即y方向 的线段PB的转角B线段PA的转角a(使直角变小)dx x线段PB的转角B(使直角变小)7xy综合到一起,得V xy称之为平面问题的几何方程。注:(1)上式对两种平面问题都适用(2)当物体的位移分量完全确定时, 由上式可完全确定应变分量;但当物体的应变分量完全确定时,位移分量却不能完全确定。(3)变形协调方程(相容方程)由几何方程有3 2x_ : U f u2y ; X y _x; yy;J 3y : V一 2二 2x yx两式相加,得乎Z c2 兔x y +X2 C 6所以,平面问题变形协调方程(相容方程)为 2 2

18、. 29 9 9 + = xy22J L、Jy x xy应变分量;x,;y, xy必须满足该方程,才能保证位移的存在。如果任意选取的函数;X,; y, xy不满足变形协调方程,那么由三个 几何方程中的任意两个求出的位移分量, 将与第三个几何方程不相容。这表示,变形后的物体不再是连续的,而将发生某些部 分相互脫离/互相侵入的现象。(4)为了应用的方便,几何方程可以写成矩阵的形式:iY I y;刃丿 U V 鬥dx对于三维问题,几何方程VXI IyIY IyzLzxI Ex Z变形协调方程(相容方程)可见相尖参考文献例题:是说明下列应变状态是否可能?1. / C (x2 y2)2厂cyxy 二 2

19、cxyx 二 C(X V2)2厂cyx 厂 2cxy2.2 . 乎Z 匕理证:1. -f =2c ,y代入变形协调方程,所以为真实应变2 92 艺 2c7代入变形协调方程,所以为非真实应变r=0,2cX左边二右边dPz2xyT=0,二X4cy左边工右边试证当三个应变分量确定时,位移分量却不能完全确定 证:令三个应变分量为零,即;X=;y = xy = O (a)由几何方程,可以求出相应的位移分量-u V U05 050(b)X V VX将前二式分别对x及y积分,得旷 f(M,vg(X)(c)其中f、g为任意函数。代入(b)中的第三式,得(d)df(y) dq(x)dy dxy的函数 二x的函数

20、故只可能两边都等于同一个常数f (y) = u wy , g(x)二 v。_ wx其中U。,V。,W都是任意常数。代入(c),得位移分量上式表示的位移是三个应变分量为零时的位移,也就是刚体 位移。实际 上,u。,V。分别是物体沿x轴及y轴方向的刚体位移,而w是物体绕z 轴的刚体转动。既然物体在应变为零时可以有任意的刚体位移。可见,当物体发生一定的形变时,由于约束条件不同,它可能具有不同的刚体位移,因而他的唯一并不是完全确定。在平面问题中,常数U。,V。,w的任意性就反应位移的不确 定性。而为了完全确定位移,就必须有三个适当的约束 条件来确定这三个 常数。第六节平面问题的物理方程应力与应变之间的

21、尖系考虑平面问题中的物理方程,导出应变与应力之间的矢 系,即平面问 题中的物理方程。对于各向同性的完全弹性体,其应力分量和应变分量之间的矢系为线 性尖系,即服从广义虎克定律,记为Xy G-yzvzx式中E -1G 1G zx拉压弹性模量(弹性模量)侧向收缩系数(泊松比,泊松系数)剪切弹性模量三者的尖系平面应力问题yz zxyz zx平面应力问题物理方程E-扑 2(1 J xy TE xy是由二x和二y确定, 不是独立的应力分量。解出应力,得1I /TCx + rS)y11xyE (卩名+ sy) XE y 一 E1-J2(1 + j)xy - La2 2 xy写成矩阵的形式fa 1E1- P2

22、0 gv X0 py1 A ! Y I xy2其中-1I 1 0D 丄 El11 _41 rJOO称为平面应力问题弹性矩阵、平面应变问题=0,Y =0,7z yz0yz zx由广义虎克定律得把上式代入广义虎克定律得11I yxy把平面应力问题物理方程中的y)(y 1-12(1r)xyxy则得平面应变问题的物理方程为/-1 D ; /小 E (1 -、厂ID】1 0(1)(12)1 -j0! o2 (1-卩)一称为平面应变问题弹性矩阵。第七节边界条件对于弹性力学平面问题,有八个未知量,推导出了八个 基本方程,因此在 适当的边界条件下,从八个基本方程求解 未知函数是可能的。1.位移边界条件物体在全

23、部边界上的位移分量是已知的,即在边界上,有Us,V 二 Vs式中Us,必是在边界上坐标的已知函数。2.应力边界条件平衡方程描述的是应力与体积力的平衡矢系, 而应力边界条件描述的是应力与表面力之间的平衡尖系。如图2-6(a)所示,一个弹性体边界为 Si上作用表面力X ,Y,在固定边界S2上u和V都等于0。y(b)图2-6应力边界条件把图2-6 (a)的微元体ABD取出得图2-6 (b) 设边界AB的外法线n与x轴的夹角为9 , AB长度为ds 则直角边AD=ds sin 9 , DB=ds cos9,由平衡条件 Fx二 0,得Xtds- xtcos ds yxt sin, ds X1cosdss

24、inAds t =略去上式中包含高阶微量 ds平方项,两(rx)sCOS ( yxhSi/7 = X同理,由V Fy二0,得(xy)scos e yhsin = Y所以,应力边界条件为:仁 x)sC03 + Cyx)sSi 冲二X (xy)sCOS Cy)sSifl T= Y如果弹性体处于平衡状态,则在内部应满足平衡微分方程,同时,在边界 上应满足应力边界条件。注意:实际上弹性力学边界条件有三种:1 应力边界条件;2 位移边界条件;3 混合边界条件例题:确定图示平面问题的边界 S】和S2的应力边界条件n2 qb i11 a: 3厂 is2s 例题:图示三角形水坝,试写出 OA面的应力边界条件解

25、:边界 oa 面:x=gy , 丫二 0 ,所以有 cos: = -1 3 sin= = 0,代入应力边界条件,得Cx)s (-1)( yx)s 0 = X= gyCxy)s (T)+(Cy)s * 0=V=0 故得(rx) S y,o-cKo-czaL例题:确定图示结构AB面(连杆支承面)的边界条件(混合边界条件)。解:边界AB面的应力边界条件:X 二?,Y 二 0,二0 所以有 cos- = 1,si= 0,代入应力边界条件第二个方程,得(xy ) s = 0则边界AB面在x方向有位移边界条件u 二 Us= 0第八节圣维南原理圣维南原理是法国科学家圣维南于 1855年首先提出的。我们在求解

26、弹性力学问题时,对应一定的边界条件,得出相应的解答,表示 一定的应力状态。如果边界条件改变,则将 得出不同的应力分布状态。当外有时部载荷比较复杂时,要使应力分量完全满足边界条件是比较困难的, 只好将边界面上的力系进行适当的变换,从而将对问题的解答有所影响,圣维南原理回答 了这个影响的范围。如图2-8(a)表示用钳夹住一个杆件,即相当于在这杆件上作用于一个平衡力系,如图 2-8 (b)所示。由生产实践和理论上都可以说明,无论作用力怎样大(如把杆件钳断) ,平衡力在杆件内所引起的应力都局限于 A部的附近区域,所引起的应力随着离开A部区域,而很快减小。即在用虚线表示的区域A以 外,几乎没有应力产生。

27、(b)图2-8圣维南原理(局部影响原理)可以表述如下: 如果物体一小部分边界上的力系,用一个静力等效(合力相等,合力偶矩相等)的力系 代替,那么在新的力系作用下,仅在加载区域临近应力有改变,而距离该区 域较远处,应力分布几乎没有影响。有了上面的认识,我们研究几种静力等效情况。如图2-9所示的情况,如果把一端或两端的拉力 P变换为静力等效的力P/2,或均匀分布的拉力P/A( A为杆件的横截面积),那么只有图中虚线部分的应力分布有显着的改变,而其余部分所受的影响可以不计。这就是说,在图2-9所示的四种情况下,离开两端较远的部位的应力分布并没有显着的差别。(b)P/2H1H P/Agj(c)P/2

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1