海洋磁力测量技术应用及发展现状.docx

上传人:b****2 文档编号:657188 上传时间:2022-10-11 格式:DOCX 页数:6 大小:40.68KB
下载 相关 举报
海洋磁力测量技术应用及发展现状.docx_第1页
第1页 / 共6页
海洋磁力测量技术应用及发展现状.docx_第2页
第2页 / 共6页
海洋磁力测量技术应用及发展现状.docx_第3页
第3页 / 共6页
海洋磁力测量技术应用及发展现状.docx_第4页
第4页 / 共6页
海洋磁力测量技术应用及发展现状.docx_第5页
第5页 / 共6页
点击查看更多>>
下载资源
资源描述

海洋磁力测量技术应用及发展现状.docx

《海洋磁力测量技术应用及发展现状.docx》由会员分享,可在线阅读,更多相关《海洋磁力测量技术应用及发展现状.docx(6页珍藏版)》请在冰豆网上搜索。

海洋磁力测量技术应用及发展现状.docx

海洋磁力测量技术应用及发展现状

海洋磁力测量技术应用及发展现状

一、引言

海洋是地球最广阔的区域,占地球表面积的71%,目前海底还有95%的未知世界。

21世纪是海洋世纪,着力打造“向海经济”,搞好“21世纪海上丝绸之路”,发展海洋磁力测量技术是海洋测量技术的重要组成部分。

海洋磁力测量技术是认识和开发海洋的重要手段,海洋磁场信息是海战场环境信息建设的重要组成部分,也是地球物理场和海洋地质科学研究的主要内容之一。

海洋磁力测量的对象主要是地磁场或地磁异常场。

地磁场是随时间和空间而变化的矢量场,海洋磁力测量技术属于弱磁场探测技术,海洋磁力测量的任务就是通过各种手段获取海洋区域地磁场的分布和变化特征,为进一步研究、解释和应用海洋磁力信息提供基础数据支撑。

海洋磁力测量在军事领域和民用领域都有广泛应用,高精度的海洋磁场信息可为地震监测与研究、海底地质研究、海洋矿产资源勘探、海洋沉船打捞搜救、海洋油线管道调查、水下磁性目标探测、导弹地磁匹配导航、水下潜器自主导航等方面提供重要的基础资料。

海洋磁力测量技术涉及到磁力仪传感器技术磁场测量数据的采集、磁力测量信息的处理、磁场模型的建立以及磁力成果与应用需求的结合等多方面的问题。

当前我国海洋磁力测量技术处在发展阶段,我国海域和部分重要海区精密海洋磁力测量,还是以船载地磁总场测量为主,航空磁力测量为辅。

磁场信息获取手段不完备、测量平台效率低、测量要素不齐全、测量区域覆盖不全等问题普遍存在。

本文结合海洋磁力测量技术在海洋工程和军事方面的应用需求,对海洋磁力测量技术发展现状进行了评估对发展前景进行了展望。

二、海洋磁力测量技术在海洋工程上的应用

近年来随着海洋磁力测量相关技术的不断发展,技术越来越成熟,海洋磁力测量技术在民用领域应用范围越来越广。

比如,海洋磁力测量发现了海底条带状磁异常,为板块构造学说提供了重要依据。

海洋磁力测量技术在海洋工程开发上有广阔的空间。

(一)海底光缆铺设中的应用

海洋磁力探测技术是通过探测海底线缆引起的地球磁场变化,从而实现对海缆的探测和定位。

地磁场分布较为复杂,在易受海区磁场(如海床上有海砂矿等之类的磁性物质)干扰的区域外,可探测埋设较浅的(小于1m)海缆,其相对地磁场(25000~65000nT)的变化量约为50nT,可以据此探测海底电力电缆、海底通信电缆和海底光缆。

其他采用饱和式磁力仪探测、质子磁力仪探测、光泵磁力仪探测等方法其均可达到很好的探测精度,能够对海缆故障点和敷设路由进行探测和定位。

(二)在海底油气管线维修的应用

我国海洋石油产业发展迅速,建立了很多石油平台并铺设了大量的海底管线(输油管线、输气管线及注水管线等),由于海水腐蚀、海洋生物损害等,部分管道出现损害和抗力衰减,造成油气泄露,产生经济损失并会对环境产生危害,因此探测现有海底管线铺设现状及准确位置对海底管线及时维修和实时更新十分重要。

由于海底管线基本都是较粗的铁质管,其产生的磁场比较大,有几十到几百纳特的磁异常,利用海洋磁力测量技术对油田平台周边海底管线进行探测,探测效果明显。

(三)在海底废弃军火及其他磁性物体方面的应用

在海洋战争中,近海遗弃的水雷和炮弹,对海洋工程和正常工作构成威胁。

因此采用磁力测量技术,通过布设较密的观测网,及时发现磁异常点,对海洋工程施工和未知海域航行进行前期排查处理,为海洋区域的安全提供保障。

(四)在大型海洋工程选址的应用

大型的海洋工程必须确保其地基稳定可靠,与地面飞机场跑道类似,海上相关工程也需要对地磁环境进行测量,确保区域稳定性。

应用海洋磁力测量技术既可以排查海底沉船残骸等有害障碍物,又可以有效避免将重型工程建设在海底矿产之上,影响日后开发使用。

另外最重要的是可以了解工程区域内断层及其他地质构造情况。

利用海洋磁力测量技术结合地震勘探和钻孔资料,对地质异常进行地质解释。

(五)在环境监测方面的应用

海底及海面污染物堆积会对海洋生物和人类日常海洋活动产生严重的影响,因此各国都在积极开展海洋环境治理,相较于传统的密集取样,采用海洋磁力测量能够大范围、宽海域、多层次的对海洋环境污染情况进行较为全面的监测和掌控。

三、海洋磁力测量技术在军事方面的应用

海洋磁力信息是海军海战场环境建设必不可少的要素,海洋磁性目标探测识别技术、海洋地磁匹配导航等关键技术的应用都需要海洋磁力测量技术及海洋磁测资料的支撑。

(六)在探潜中的应用

海洋磁力测量技术可以有效获取到水下及水面磁场、变化信息,对海洋中的磁性物体(潜艇、水雷、舰船等)进行探测,可以在已知背景场的基础上对磁异常现象进行分析,探测潜艇活动情况,可以采用大深度目标探测识别技术,还可以与航空磁力测量相结合,探测复杂背景场条件下的潜艇目标。

世界上先进的航空磁探测系统可实现在潜艇上方300~800m处对其进行准确定位。

(七)在潜艇消磁隐身中的应用

为了应对磁异常探测的威胁世界上军事强国均投入大量财力对潜艇磁隐技术进行研究,以提升其生存能力。

潜艇消磁集中在控制或减少潜艇磁场方面,由于潜艇本身具有较大的磁场,使其接近地球背景场信息很难,加上不同海域其本身磁性变化未知,因此消除固定磁场这种方法很难保证消磁效果。

现代消磁技术已采用磁抵消技术,即通过海洋磁力测量技术实时获取当前海域的磁场信息,经过地磁解算运用消磁设备进行抵消潜艇本身磁性,达到潜艇消磁隐身目的。

(八)在舰艇导航和武器制导中的应用

地磁导航是海洋军事应用领域之一,海洋磁力测量技术的发展实现了地磁导航与GNSS、惯性系统等结合,为导航与制导提供了更加先进科学的选择,其具有无源、无辐射、全天时、全天候、全地域、体积小、能耗低等优点。

潜艇、无人潜航器可依托地磁导航实现长航时,高精度水下航行;巡航导弹可依托地磁导航实现跨海制导定位;同时,地磁导航还应用在走航式水雷导航系统中。

四、海洋磁力测量关键技术发展现状

(九)海洋磁力传感器技术

海洋磁测最早可追溯到20世纪50年代,Vacquier等人采用磁通门磁力仪在大洋进行地磁场测量。

随着传感器技术的发展,磁力测量系统由简单到复杂,灵敏度和精密度越来越高。

根据测量原理不同,磁力测量系统主要分为感应线圈式磁力仪、磁通门磁力仪、核子旋进质子磁力仪、Overhauser效应质子磁力仪、光泵磁力仪、原子磁力仪、超导磁力仪等。

20世纪初,早期的海洋磁力测量主要采用感应式磁力仪进行磁偏角测量。

20世纪40年代,磁通门磁力仪研制成功,极大地提高了磁测精度。

磁通门磁力仪是矢量磁力仪,可以测量三分量,但是相比量子磁力仪,测量精度不能满足高精度磁测的需求。

随着量子磁力测量技术的发展和成熟,20世纪70年代开始,海洋磁测大量采用质子磁力仪和光泵磁力。

质子磁力仪只能点测,噪声水平约为0.1nT/Hz@0.1Hz,Overhauser效应质子磁力仪可以连续测量,其噪声水平约为0.01nT/Hz@0.1~1.0Hz,光泵磁力仪也可以连续测量,其噪声水平约为0.001nT/Hz@0.1Hz。

近些年来,超导量子干涉磁力仪和原子磁力仪的研发也十分活跃。

超导量子干涉磁力仪是一种矢量磁力仪,它的优势是灵敏度高。

在液氦温度下(4K)用低温超导体制成的LTCSQUIID,其灵敏度可达1fT/Hz,测量频带宽。

原子磁力仪完全利用光学方法测量磁场,灵敏度达到0.54fT/Hz,空间分辨率达到毫米级。

当前海洋磁力测量主要以质子磁力仪和光泵磁力仪为主,美国的Geometrics、加拿大的Scintrex、英国的Bartington等几家外国公司海洋磁力仪产品发展起步早,种类多、可靠性好,几乎占据了全球绝大部分市场。

(十)海洋磁力测量要素信息

地磁场是空间和时间的矢量场,以观测点为坐标系的原点,地磁场矢量有7个要素,分别是北向分量X、东向分量Y、垂向分量Z、水平分量H、磁偏角D、磁倾角I及总强度F,见图1。

其中地磁总场F、磁偏角D、磁倾角I称为“地磁3要素”。

海洋磁力仪根据测量要素不同可分为总场磁力仪、矢量磁力仪、总场梯度磁力仪和全张量梯度磁力仪。

总场磁力仪测量地磁总磁场强度的大小,一般使用质子磁力仪或光泵磁力仪,多使用光泵磁力仪。

矢量磁力仪测量地磁场三分量,一般使用磁通门磁力仪或超导量子干涉磁力仪,由于定向要求较高,现有系统难以满足精度要求,因此较少进行。

图1 地磁要素示意图

总场梯度磁力仪测量总场模量的空间变化率(包括垂直梯度、水平梯度、三轴梯度)。

全张量梯度磁力仪测量地磁场三分量的在3个方向的空间变化率,包含9个要素,可实现单点定位,对于提升目标探测性能具有重要意义。

当前单探头的总场磁力测量技术已较为成熟,形成比较完善的技术体系和测量规范。

很多单位已经开发多探头平台,可以完成模量梯度测量任务,但尚未大规模应用。

全张量梯度测量信息丰富,是将来的发展趋势,但目前尚不成熟。

(十一)海洋磁力测量平台

由于海洋磁场在军事上具有重要应用,西方各国都通过船磁测量完成了本国海域的磁场测量工作,世界上最早的地磁图就是船磁测量的大西洋海区的磁偏角等值线图。

船磁测量主要有两种形式:

一是在无磁性船上安装地磁仪器;二是用普通船只拖曳磁力仪在海洋上测量。

特别是远海磁测时,为了提高测量数据精度,还需要把磁力仪沉入海底,获得测区日变改正数据。

航空磁测是一种速度快、费用省的磁测方法。

美国海军20世纪50年代就开始全球航空磁场测量计划。

由于有人飞机航程有限,一般只能执行近海的航磁测量任务,随着无人机航磁测量技术的成熟,远海航磁测量也将日趋成熟。

船载和航空磁力测量磁测精度高,但是速度太慢。

卫星磁测为全球磁场的高精度快速测量提供了有力的工具,通过卫星磁测,可以在很短的时间内获得全球磁场资料,用来建立全球磁场模型。

我国于20世纪70年代开始对中国附近海域进行航空磁测,由于测量目的是为地学基础调查和海洋矿产资源开发服务,多数测量比例尺较小,磁测精度较低。

近年来,我国开展了以船载磁测为主,航空磁测为辅的我国海域磁场和部分重要海区的精密探测。

(十二)海洋磁力测量成果

海洋磁力测量成果一般用地磁图和地磁模型来描述。

地磁场模型就是利用一定的数学方法对地磁场的一种近似和描述,对人们认识和了解地球内部结构、电离层磁层活动、地磁导航与定向等都有重要作用。

目前,国际上公认的地磁场模型是国际地磁学与高空物理协会(IAGA)推出的国际地磁参考场IGRF模型,是广泛收集卫星、台站、航空和船载磁力数据的研究成果。

随着高精度、长周期的卫星和地面台站等磁测数据的积累和地磁场建模方法的改进,国际上相关的研究机构也在研究和推出一系列新的地磁场模型,以满足不同的应用需求。

世界地磁场模型(WMM)是由美国国家地理情报局(NGA)和英国国防地理中心(DGC)等联合发布的。

美国国防部、英国国防部、北大西洋公约组织(NATO)和国际海道组织(IHO)等都将该模型作为导航和姿态确定参考系,数据主要来源于Oersted和CHAMP等卫星的磁测数据。

球谐分析是研究全球地磁场和地磁图的主要数学方法,但是受到数据和计算能力的限制,导致它的分辨能力有限,不适宜于处理某一地区磁场或描述空间尺度较小的磁异常。

安振昌等利用我国历年来的地磁观测资料,以及部分国外地磁台站资料,以三阶泰勒多项式拟合方法建立了中国地区的主磁场模型,记为CHINAMF。

该模型对于中国大陆而言精度是最高的,但是对于中国海域而言,误差较大。

五、海洋磁力测量技术发展展望

随着磁场测量传感器技术、无人机平台技术、计算手段和理论方法的不断发展和成熟,海洋磁力测量正朝着高精度、高效率、小型化、多学科交叉应用的方向发展。

⑴测量传感器趋于高精度、小型化海洋磁力测量从磁饱和式磁通门磁力仪、核子旋进式质子磁力仪等早期产品,一步步演进到光泵磁力仪、超导量子干涉磁力仪和原子磁力仪等更加小型化、精度更高、使用范围更广的产品。

随着计算机技术的进步,数据处理方式也经历了从模拟信号到数字信号的转变,小型化、便携性、数字化以及高精度是海洋磁力仪未来的发展方向。

因此,为了满足各方面的应用需求,应该

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 理学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1