最新最全新人教版高中数学知识点总结精华.docx
《最新最全新人教版高中数学知识点总结精华.docx》由会员分享,可在线阅读,更多相关《最新最全新人教版高中数学知识点总结精华.docx(192页珍藏版)》请在冰豆网上搜索。
最新最全新人教版高中数学知识点总结精华
20XX年新人教版高中数学知识点总结
高中数学
必修1知识点
第一章
集合与函数概念
【1.1.1】集合的含义与表示
(1)集合的概念
集合中的元素具有确定性、互异性和无序性
.
(2)常用数集及其记法
表示整数集,Q表示有理数集,
N
N
N
Z
R表示实数集
表示正整数集,
表示自然数集,
或
.
(3)集合与元素间的关系
对象a与集合
(4)集合的表示法
M
a
M
a
M
的关系是
,或者
,两者必居其一.
①自然语言法:
用文字叙述的形式来描述集合
.
②列举法:
把集合中的元素一一列举出来,写在大括号内表示集合
.
③描述法:
{x|x具有的性质},其中x为集合的代表元素
.
④图示法:
用数轴或韦恩图来表示集合
.
(5)集合的分类
①含有有限个元素的集合叫做有限集
.②含有无限个元素的集合叫做无限集
.③不含有任何元素的集合叫做空集
(
).
【1.1.2
】集合间的基本关系
(6)子集、真子集、集合相等
名称
记号
意义
性质
示意图
(1)A
A
A
B
A
B且
B且
(2)
A(B)
子集
A中的任一元素都属于
B
B
A
B
A)
A
A
B
B
C
A
A
C
B
(或
(3)若
,则
或
A,则
(4)若
A(A为非空子集)
(1)
A
B
A
B,且B中至少有一
真子集
B
A
元素不属于A
B
C
A
C
A
B且
(或
B
A)
(2)若
,则
集合
A中的任一元素都属于
B,B
(1)A
B
A
B
A(B)
相等
中的任一元素都属于
A
(2)B
A
n
n
n
n
A有n(n
1)个元素,则它有
2
2
1个真子集,它有
2
1个非空子集,它有
2
2非空真子集.
(7)已知集合
个子集,它有
精品资料
精品学习资料
第1页,共41页
【1.1.3】集合的基本运算
(8)交集、并集、补集
名称
记号
意义
性质
示意图
A
AAAAAA
A
A
A
(1)
(2)
{x|x
A,且x
B}
A
B
交集
A
B
B
BA
A
BAAA
B
(3)
(1)
(2)
{x|x
A,或x
B}
A
B
并集
B
A
B
B
(3)
1A
(eUA)
2A
(eUA)U
U,且x
{x|x
A}
痧(A
B)
(
A)
(?
B)
eUA
补集
U
U
U
痧U(A
B)
(
A)
(?
UB)
U
【补充知识】含绝对值的不等式与一元二次不等式的解法
(1)含绝对值的不等式的解法
不等式
解集
|x|
a(a
0)
{x|
a
xa}
|x|
a(a
0)
x|x
a
x
a}
或
ax
b
|x|
a,|x|
a(a
0)
把
看成一个整体,
化成
|ax
b|
c,|ax
b|
c(c
0)
型不等式来求解
(2)一元二次不等式的解法
判别式
0
0
0
b2
4ac
二次函数
2
yaxbxc(a
0)
O
的图象
2
b
2a
一元二次方程
b
4ac
x1,2
b
2a
2
x
x
无实根
ax
bxc
0(a
0)
1
2
x1
x2)
的根
(其中
精品资料
精品学习资料
第2页,共41页
2
b
2a
ax
bxc0(a
0)
{x|x
x1或
xx2}
{x|x
}
R
的解集
2
ax
bxc0(a
0)
{x|x1
xx2}
的解集
〖1.2〗函数及其表示
【1.2.1】函数的概念
(1)函数的概念
f
,对于集合A中任何一个数x,在集合B中都有唯一确定的数
f(x)
①设A、B是两个非空的数集,如果按照某种对应法则
和它对应,那么这样的对应(包括
f
f
:
A
B.
集合A,B以及A到B的对应法则
A到B的一个函数,记作
)叫做集合
②函数的三要素:
定义域、值域和对应法则.
③只有定义域相同,且对应法则也相同的两个函数才是同一函数.
(2)区间的概念及表示法
①设a,b是两个实数,且a
[a,b];满足a
(a,b);
b,满足
ax
b的实数x的集合叫做闭区间,
x
b的实数
x的集合叫做开区间,记做
记做
b的实数x的集合叫做半开半闭区间,分别记做
[a,b),(a,b];满足
x
a,x
a,x
b,x
b的实数
x的集
ax
b,或
a
x
满足
[a,
),(a,
),(
b],(
b).
合分别记做
{x|a
x
b}
(a,b),前者
a可以大于或等于b,而后者必须
注意:
对于集合
与区间
a
b.
(3)求函数的定义域时,一般遵循以下原则:
①f(x)是整式时,定义域是全体实数.
②f(x)是分式函数时,定义域是使分母不为零的一切实数.
③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于
1.
y
tanx中,
(k
Z)
x
k
⑤
.
2
⑥零(负)指数幂的底数不能为零.
f(x)
⑦若
是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.
f(x)
的定义域为[a,b],其复合函数
f[g(x)]
a
g(x)
b解出.
⑧对于求复合函数定义域问题,一般步骤是:
若已知
的定义域应由不等式
⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.
⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.
(4)求函数的值域或最值
求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值
域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:
精品资料
精品学习资料
第3页,共41页
①观察法:
对于比较简单的函数,我们可以通过观察直接得到值域或最值.
②配方法:
将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.
2
a(y)x
y
f(x)可以化成一个系数含有
y的关于x的二次方程
b(y)x
c(y)
0,则在
a(y)
0时,由于
x,y为实
③判别式法:
若函数
2
b(y)
4a(y)c(y)
0,从而确定函数的值域或最值.
数,故必须有
④不等式法:
利用基本不等式确定函数的值域或最值.
⑤换元法:
通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.
⑥反函数法:
利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.
⑦数形结合法:
利用函数图象或几何方法确定函数的值域或最值.
⑧函数的单调性法.
【1.2.2】函数的表示法
(5)函数的表示方法
表示函数的方法,常用的有解析法、列表法、图象法三种.
解析法:
就是用数学表达式表示两个变量之间的对应关系.列表法:
就是列出表格来表示两个变量之间的对应关系.图象法:
就是用图象表示两个变量之间的对应关系.
(6)映射的概念
f
①设A、B是两个集合,如果按照某种对应法则
,对于集合A中任何一个元素,在集合
B中都有唯一的元素和它对应,那么这样的对应(包括集合
A,
B以及
f
f:
A
B.
A到B的对应法则
)叫做集合A到B的映射,记作
a
A,b
B.如果元素a和元素b对应,那么我们把元素
b叫做元素
a的象,元素a叫做元素
b的原象.
②给定一个集合A到集合
B的映射,且
〖1.3〗函数的基本性质
【1.3.1
】单调性与最大(小)值
(1)函数的单调性
①定义及判定方法
函数的
定义
图象
判定方法
性质
如果对于属于定义域
I内某个区间上的
(1)利用定义
y
y=f(X)
任意两个自变量的值
x1、x2,当x(2)利用已知函数的单调性
.1..2
..
f(x2)
都有f(x)f(x)在这个
...
.....
.
(3)利用函数图象(在某个区
1
2
.
.
区间上是增.函.数..
f(x)
间图
1
象上升为增)
o
x
x1
x2
函数的
(4)利用复合函数
单调性
(1)利用定义
y
y=f(X)
如果对于属于定义域
I内某个区间上的
(2)利用已知函数的单调性
任意两个自变量的值
x1、x2,当
xf(x)
...2
(3)利用函数图象(在某个区
.
1
时,都有f(x
1)>f(x2),那么就说
f(x)在
间图
...
........
f(x)
2
这个区间上是减.函.数..
象下降为减)
o
x
x1
x2
(4)利用复合函数
②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.
精品资料
精品学习资料
第4页,共41页
y
f[g(x)]
,令u
g(x)
y
f(u)为增,u
g(x)为增,则
y
f[g(x)]
y
f(u)
为减,u
g(x)
③对于复合函数
,若
为增;若
y
f[g(x)]
y
f(u)
u
g(x)
y
f[g(x)]
y
f(u)
u
g(x)
为减,则
为增;若
为增,
为减,则
为减;若
为减,
为增,
则
y
f[g(x)]为减.
y
a(ax
f(x)
0)的图象与性质
x
(2)打“√”函数
f(x)
(
a]、[
a,
)上为增函数,分别在
[
a,0)
、(0,
a]上为减函数.
分别在
(3)最大(小)值定义
o
y
f(x)的定义域为
f(x)
M
x
I
M
x
I
①一般地,设函数
,如果存在实数
满足:
(1)对于任意的
,都有
;
x0
I
f(x0)
M
f(x)
M
(2)存在
,使得
.那么,我们称
是函数
的最大值,记作
fmax(x)
M
.
y
f(x)的定义域为
m
x
I
f(x)
m;
(2)存在
I
x0
I
②一般地,设函数
,如果存在实数
满足:
(1)对于任意的
,都有
,
使
得
f(x)
f(x0)
m.那么,我们称
m是函数
fmax(x)
m.
的最小值,记作
【1.3.2
】奇偶性
(4)函数的奇偶性
①定义及判定方法
函数的
定义
图象
判定方法
性质
如果对于函数f(x)定义域内任意一个
x,
(1)利用定义(要先判断定义
都有f(--f(x)
...x..)=......,那么函数
f(x)叫做奇.
域是否关于原点对称)
函.数..
(2)利用图象(图象关于原点
对称)
函数的
奇偶性
如果对于函数
f(x)定义域内任意一个
x,
(1)利用定义(要先判断定义
都有.f(.-.x..)=.f.(x.)..,那么函数
f(x)叫做偶.函.
域是否关于原点对称)
数.
(2)利用图象(图象关于
y轴
.
对称)
f(x)
f(0)
0.
x
0处有定义,则
②若函数
为奇函数,且在
③奇函数在y轴两侧相对称的区间增减性相同,偶函数在
y轴两侧相对称的区间增减性相反.
④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)
是奇函数.
〖补充知识〗函数的图象
(1)作图
利用描点法作图:
①确定函数的定义域;
②化解函数解析式;
③讨论函数的性质(奇偶性、单调性);
④画出函数的图象.
精品资料
精品学习资料
第5页,共41页
利用基本函数图象的变换作图:
要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.
①平移变换
0,左移h个单位
0,右移|h|个单位
0,上移k个单位
0,下移|k|个单位
hh
kk
y
f(x)
y
f(x
h)
y
f(x)
y
f(x)
k
②伸缩变换
1,伸
1,缩
0
y
f(x)
y
f(
x)
A1,缩
0
y
f(x)
y
Af(x)
1,伸
A
③对称变换
x轴
y轴
f(x)
f(
x)
y
f(x)
y
f(x)
y
y
原点
直线y
x
1
f(x)
y
f(x)
y
f(
x)
y
f(x)
y
去掉y轴左边图象
保留y轴右边图象,并作其关于
y
f(x)
y
f(|x|)
y轴对称图象
保留x轴上方图象
将x轴下方图象翻折上去
y
f(x)
y
|f(x)|
(2)识图
对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.
(3)用图
函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.
第二章
基本初等函数(Ⅰ)
〖2.1〗指数函数
【2.1.1
】指数与指数幂的运算
(1)根式的概念
xn
n
a,aR,x
R,n
1,且
x叫做a的n次方根.当
n是奇数时,a的n次方根用符号
表示;当n是偶数时,
nN
a
①如果
,那么
n
n
正数a的正的n次方根用符号
表示,负的n次方根用符号
表示;0的n次方根是0;负数
a没有n次方根.
a
a
n
n叫做根指数,a叫做被开方数.当
n为奇数时,a为任意实数;当
n为偶数时,
a
0.
a
②式子
叫做根式,这里
a
(a
(a
0)
0)
nan
nn
a
a)n
(n
a;当n为奇数时,
a;当
n为偶数时,
|a|
③根式的性质:
.
a
(2)分数指数幂的概念
m
an
nm
a
(
0,
n
1).0的正分数指数幂等于
a
mn
N
①正数的正分数指数幂的意义是:
且
0.
m
n
m
(1)n
a
(1)m(aa
a
0,m,n
N
且
n
1).0的负分数指数幂没有意义.
n
②正数的负分数指数幂的意义是:
注意口诀:
底数取倒
数,指数取相反数.
(3)分数指数幂的运算性质
r
a
s
a
rs
a(a
rs
②(a)
rs
a(a
0,r,s
R)
0,r,s
R)
①
r
r
r
(ab)
(a
0,b
0,r
R)
ab
③
精品资料
精品学习资料
第6页,共41页
【2.1.2】指数函数及其性质
(4)指数函数
函数名称
指数函数
ax(a
0且
y
a
1)叫做指数函数
定义
函数
a
1
0
a1
y
x
x
y
y
a
y
a
图象
y
1
y
1
(0,1)
(0,1)
O
O
x
x
定义域
R
(0,
)
值域
(0,1),即当
y
1.
x
0时,
过定点
图象过定点
奇偶性
非奇非偶
单调性
R上是增函数
R上是减函数
在
在
ax
ax
1
(x
0)
1
(x
0)
函数值的
x
x
a
1
(x
0)
a
1
(x
0)
变化情况
ax
ax
1
(x
0)
1
(x
0)
a变化对
a越大图象越高;在第二象限内,
a越大图象越低.
图象的影响
在第一象限内,
〖2.2〗对数函数
【2.2.1
】对数与对数运算
(1)对数的定义
x
a
N(a
0,且a
1),则x叫做以a为底
N
,其中a叫做底数,
N
x
log
N
①若
的对数,记作
叫做真数.
a
②负数和零没有对数.
x
log
(
0,
1,
0).
x
N
a
Na
a
N
③对数式与指数式的互化:
a
(2)几个重要的对数恒等式
b
loga1
0,logaa
1,
logaa
b.
(3)常用对数与自然对数
lgN
log10N
lnN
logeN
e
2.71828
常用对数:
,即
;自然对数:
,即
(其中
).
a
0,a
1,M
0,N
0,那么
(4)对数的运算性质
如果
M
N
loga
loga
loga(MN)
M
N
logaM
logaN
loga
①加法:
②减法:
精品资料
精品学习资料
第7页,共41页
logaN
a
n(
log
log
)
N
n
M
Mn
R
③数乘:
④
a
a
n
b
logbN
logba
n
⑤logb
a
loga
M(b
0,n
R)
M
0,且b
logaN
(b
1)
⑥换底公式:
【2.2.2
】对数函数及其性质
(5)对数函数
函数
对数函数
名称
loga
x(a
0且
y
a
1)叫做对数函数
定义
函数
a
1
0
a
1
x
1
x
1
y
y
y
loga
x
y
logx
a
图象
(1,0)
O
(1,0)
O
x
x
(0,
)
定义域
值域
R
(1,0),即当
x
1时,
y
0.
过定点
图象过定点
奇偶性
非奇非偶
(0,
)上是增函数
在(0,
)上是减函数
单调性
在
loga
loga
loga
x
0
(x
1)
loga
loga
loga
x
0
(x
1)
函数值的
x
0
(x
1)
x
0
(x
1)
变化情况
x
0
(0
x
1)
x
0
(0
x
1)
a变化对
(6)反函数的概念
在第一象限内,a越大图象越靠低;在第四象限内,
a越大图象越靠高.
图象的影响
y
f(x)的定义域为
C
y
f(x)
中解出x,得式子
x
(y)
y
C
A,值域为
设函数
,从式子
.如果对于
在
中的任何一个值,通过式子
x
(y)
x
(y)
x
(y)
y
f(x)
x在中都有唯一确定的值和它对应,那么式子
A
表示x是的函数,函数
y
,
叫做函数
的反函数,记作
1
1
x
f
(y),习惯上改写成
y
f(x).
(7)反函数的求法
1
f(y);
y
f(x)
x
①确定反函数的定义域,即原函数的值域;②从原函数式
中反解出
1
1
x
f(y)
y
f
(x),并注明反函数的定义域.
③将
改写成
精品资料
精品学习资料
第8页,共41页
(8)反函数的性质
1
(x)的图象关于直线
y
f(x)与反函数
y
x对称.
y
f
①原函数
1
(x)的值域、定义域.
y
f(x)的定义域、值域分别是其反函数
y
f
②函数
P'(b,a)
1(x)的图象上.
P(a,b)在原函数y
f(x)的图象上,则
y
f
③若
在反函数
y
f(x)
④一般地,函数
要有反函数则它必须为单调函数.
〖2.3〗幂函数
(1)幂函数的定义
y
x
叫做幂函数,其中x为自变量,
一般地,函数
是常数.
(2)幂函数的图象
(3)幂函数的性质
(图象关于y轴对称);是奇函数时,图象分布在第一、三象限
①图象分布:
幂函数图象分布在第一、二、三象限,第四象限无图象
.幂函数是偶函数时,图象分布在第一、二象限
(图
象关于原点对称);是非奇非偶函数时,图象只分布在第一象限
.
(0,
)都有定义,并且图象都通过点
(1,1).
②过定点:
所有的幂函数在
[0,
)上为增函数.
(0,
)上为减函数,
x
0
0,则幂函数的图象在
③单调性:
如果
,则幂函数的图象过原点,并且在
如果
在第一象限内,图象无限接近
轴与y轴.
q
p
q
p
p,q互质,p和q
Z),若p为奇数q为奇数时,则
y
x
④奇偶性:
当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.
当
(其中
q
xp
q
xp
p为奇数q为偶数时,则
y
是偶函数