智能电力设备设计.docx

上传人:b****5 文档编号:6546042 上传时间:2023-01-07 格式:DOCX 页数:11 大小:23.50KB
下载 相关 举报
智能电力设备设计.docx_第1页
第1页 / 共11页
智能电力设备设计.docx_第2页
第2页 / 共11页
智能电力设备设计.docx_第3页
第3页 / 共11页
智能电力设备设计.docx_第4页
第4页 / 共11页
智能电力设备设计.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

智能电力设备设计.docx

《智能电力设备设计.docx》由会员分享,可在线阅读,更多相关《智能电力设备设计.docx(11页珍藏版)》请在冰豆网上搜索。

智能电力设备设计.docx

智能电力设备设计

光伏逆变器、风电变流器

功率MOSFET、IGBT、IPM

电力电子产品/设备

APF、SVG

大容量变换技术

大功率电磁兼容设计

Photovoltaicinverter,windpowerconverters

PowerMOSFET,IGBT,IPM

Powerelectronicproducts/equipment

APF,SVG

Largecapacitytransform

EMCDesignPower

5 kWDC/DCconverterforhydrogengenerationfromphotovoltaicsources

InternationalJournalofHydrogenEnergy

ThispapercoversthedesignofaDC–DCpowerconverteraimedforhydrogenproductionfromphotovoltaicsources.Powerconditioningforsuchapplicationisusuallydrivenbydifferentconstraints:

highstep-downconversionratioisrequirediftheinputvoltageofsuchequipmenthastobecompatiblewithphotovoltaicsourcesthatareconnectedtogrid-connectedinverters;galvanicisolation;highefficiencyandlowmass.Takingintoaccountthosefactors,thisworkproposesapush–pullDC/DCconverterforpowerlevelsupto5 kW.Theoperationandfeaturesoftheconverterarepresentedandanalyzed.Designguidelinesaresuggestedandexperimentalvalidationisalsogiven.

ArticleOutline

Nomenclature

1.Introduction

2.DC/DCconverter:

operationprincipleandfeatures

2.1.PVandelectrolyserelectricalmodels

2.2.DC/DCconverterdesign

3.Applicationofaspecificdevelopment

3.1.Initialspecifications:

photovoltaicarrayandelectrolyser

3.2.Deviceselection

3.3.Inputandoutputfilters:

calculationsandrealisation

3.4.Magneticdesign:

transformerandinductors

3.5.DrivingandPWMcontrolcircuits

4.DC/DCconvertersimulationsandexperimentalresults

5.Conclusions

References

Grid-connectedphotovoltaicpowersystems:

Technicalandpotentialproblems—Areview 传统区域性光伏发电电力系统的革新

RenewableandSustainableEnergyReviews可再生与可持续利用能源评论

Traditionalelectricpowersystemsaredesignedinlargeparttoutilizelargebaseloadpowerplants,withlimitedabilitytorapidlyrampoutputorreduceoutputbelowacertainlevel.Theincreaseindemandvariabilitycreatedbyintermittentsourcessuchasphotovoltaic(PV)presentsnewchallengestoincreasesystemflexibility.Thispaperaimstoinvestigateandemphasizetheimportanceofthegrid-connectedPVsystemregardingtheintermittentnatureofrenewablegeneration,andthecharacterizationofPVgenerationwithregardtogridcodecompliance.TheinvestigationwasconductedtocriticallyreviewtheliteratureonexpectedpotentialproblemsassociatedwithhighpenetrationlevelsandislandingpreventionmethodsofgridtiedPV.Accordingtothesurvey,PVgridconnectioninvertershavefairlygoodperformance.Theyhavehighconversionefficiencyandpowerfactorexceeding90%forwideoperatingrange,whilemaintainingcurrentharmonicsTHDlessthan5%.Numerouslarge-scaleprojectsarecurrentlybeingcommissioned,withmoreplannedforthenearfuture.PricesofbothPVandbalanceofsystemcomponents(BOS)aredecreasingwhichwillleadtofurtherincreaseinuse.ThetechnicalrequirementsfromtheutilitypowersystemsideneedtobesatisfiedtoensurethesafetyofthePVinstallerandthereliabilityoftheutilitygrid.Identifyingthetechnicalrequirementsforgridinterconnectionandsolvingtheinterconnectproblemssuchasislandingdetection,harmonicdistortionrequirementsandelectromagneticinterferencearethereforeveryimportantissuesforwidespreadapplicationofPVsystems.Thecontrolcircuitalsoprovidessufficientcontrolandprotectionfunctionslikemaximumpowertracking,invertercurrentcontrolandpowerfactorcontrol.Reliability,lifespanandmaintenanceneedsshouldbecertifiedthroughthelong-termoperationofPVsystem.Furtherreductionofcost,sizeandweightisrequiredformoreutilizationofPVsystems.UsingPVinverterswithavariablepowerfactorathighpenetrationlevelsmayincreasethenumberofbalancedconditionsandsubsequentlyincreasetheprobabilityofislanding.ItisstronglyrecommendedthatPVinvertersshouldbeoperatedatunitypowerfactor.

ArticleOutline

Nomenclature

1.Introduction

2.Glossaryoftermsandacronyms

3.GlobalPVmoduleanditselectricalperformance

4.Grid-connectedPVsystems

4.1.Powervalue

4.2.RatiobetweenloadandPVpower

5.Potentialproblemsassociatedwithhighpenetrationlevelsofgrid-tiedPV

6.Grid-connectedinverters—controltypesandharmonicperformance

6.1.Harmonics

6.2.Inverters’operationalanalysis

7.Islandingdetectionmethods

8.Performanceandreliabilityofinverterhardware

9.Theoverallconclusionandrecommendation

Acknowledgements

References

光伏系统设计选型的优化联网系统中各模块的技术革新与效能整合提高

Optimalsizingofagrid-connectedPVsystemforvariousPVmoduletechnologiesandinclinations,inverterefficiencycharacteristicsandlocations  

RenewableEnergy

Anoptimalsizingmethodologybasedonanenergyapproachisdescribedandappliedtogrid-connectedphotovoltaicsystemstakingintoaccountthephotovoltaicmoduletechnologyandinclination,theinvertertypeandthelocation.Amodeldescribingtheefficiencyform-Si,p-Si,a-SiandCISisused.ThemethodhasbeenappliedonvariousmeteorologicalstationsinBulgariaandCorsica(France).Themainparameteraffectingthesizingistheinverterefficiencycurve.TheinfluenceofthePVmoduletechnologyseemslessimportantexceptforamorphousphotovoltaicmodulesforwhichspecialremarkshavebeenmade.TheinclinationonthePVsysteminfluencestheperformancesparticularlywhentheinverterisundersizedcomparedtothePVpeakpower.

ArticleOutline

1.Introduction

2.PVmoduleefficiency

2.1.SomemodelsofPVefficiencyandmaximumpower

2.2.Experimentalverification

3.Grid-connectedinverters

4.SolarradiationestimationontiltedPVmodules

4.1.Thediffusecomponent

4.2.Thediffusecomponentontiltedsurface

4.3.Thetiltedbeamradiation

4.4.Thegroundreflectedradiation

5.Sizingoptimizationmethodology

6.Optimizationresults

6.1.InfluenceoftheinvertertypeandPVmoduleinclination

6.2.InfluenceofthePVtechnology

6.3.Siteinfluence

7.Monthlyperformances

7.1.MonthlyvariationofthePVefficiency

7.2.MonthlyvariationofPVsystemefficiency

8.Conclusions

Efficientdesignandsimulationofanexpandablehybrid(wind–photovoltaic)powersystemwithMPPTandinverterinputvoltageregulationfeaturesincompliancewithelectricgridrequirements 低压智能电力电子变换技术

ElectricPowerSystemsResearch

Inthispaperanefficientdesignalongwithmodelingandsimulationofatransformer-lesssmall-scalecentralizedDC—busGridConnectedHybrid(Wind–PV)powersystemforsupplyingelectricpowertoasinglephaseofathreephaselowvoltage(LV)strongdistributiongridareproposedandpresented.Themaincomponentsofthehybridsystemare:

aPVgenerator(PVG);andanarrayofhorizontal-axis,fixed-pitch,small-size,variable-speedwindturbines(WTs)withdirect-drivenpermanentmagnetsynchronousgenerator(PMSG)havinganembeddeduncontrolledbridgerectifier.AnoverviewofthebasictheoryofsuchsystemsalongwiththeirmodelingandsimulationviaSimulink/MATLABsoftwarepackagearepresented.Anintelligentcontrolmethodisappliedtotheproposedconfigurationtosimultaneouslyachievethreedesiredgoals:

toextractmaximumpowerfromeachhybridpowersystemcomponent(PVGandWTs);toguaranteeDCvoltageregulation/stabilizationattheinputoftheinverter;totransferthetotalproducedelectricpowertotheelectricgrid,whilefulfillingallnecessaryinterconnectionrequirements.Finally,apracticalcasestudyisconductedforthepurposeoffullyevaluatingapossibleinstallationinacitysiteofXanthi/Greece,andthepracticalresultsofthesimulationsarepresented.

ArticleOutline

1.Introduction

2.Configurationandmodelingofasmall-scalecentralizedDC—busGCHWPPSviaSimulink/MATLAB

2.1.Solarandwindpotentialanalysisofaselected(candidate)installationsite

2.2.PhotovoltaicSubsystem

2.2.1.Photovoltaicgenerator(PVG)model

2.2.2.Buck-BoostDC–DCConverter(BBC1andBBC2)models

2.2.3.Controlunit(DSP1)ofthePVS

2.3.WindEnergyConversionSubsystem

2.3.1.Windturbinemodel

2.3.2.Permanentmagnetsynchronousgenerator(PMSG)model

2.3.3.Embeddeduncontrolleddiodebridgerectifiermodel

2.3.4.Buck-BoostDC–DCConverter(BBC3andBBC4)models

2.3.5.Controlunit(DSP2)oftheWECS

2.4.Powerdecouplingcapacitor(CPD)

2.5.Necessaryrequirements(rules)forconnectingaHWPPStotheGreekLVdistributiongrid

2.5.1.Electricgridmodel

2.5.2.Invertermodel

2.5.3.Controlunit(DSP3)oftheinverter

3.Casestudy

3.1.SolarandwindpotentialanalysisoftheselectedsiteinXanthi,Greece

3.2.Simulationresults

4.Conclusions

AppendixA.Listofsymbols

AppendixB.Fuzzyrules

References

Vitae

Designofanon-invertingsynchronousbuck-boostDC/DCpowerconverterwithmoderatepowerlevel 

RoboticsandComputer-IntegratedManufacturing

Thispaperpresentsthedesignofanon-invertingsynchronousbuck-boostDC/DCpowerconverterwithmoderatepowerlevelforasolarpowermanagementsystem.Thebuck-boostrequirementarisesfromtherapidchangesintheatmosphericconditionorthesunlightincidentangle.Thesystemmainlyconsistsofthenon-invertingsynchronousbuck-boostDC/DCpowerconverter,MOSFETdrivers,anti-crossconductionlogiccircuitry,feedbackcompensator,andPWMregulator.Thesystemiscapableofconvertingthesupplyvoltagesourcetohigherandlowervoltagestotheloadterminalwithvoltagepolarityunchanged.ThevoltageattheloadterminaliscontrolledbycontinuouslyadjustingthedutycycleofthePWMregulator.Applicationofthebuck-boostconverterinbatterymanagementsystemdesignisalsoaddressed.

ArticleOutline

1.Introduction

2.Synchronousbuck-boostconverter

3.Systemdesign

4.Dynamiccharacteristic

5.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1