Comparison of four models for thermal response test evaluation.docx

上传人:b****5 文档编号:6470101 上传时间:2023-01-06 格式:DOCX 页数:19 大小:148.67KB
下载 相关 举报
Comparison of four models for thermal response test evaluation.docx_第1页
第1页 / 共19页
Comparison of four models for thermal response test evaluation.docx_第2页
第2页 / 共19页
Comparison of four models for thermal response test evaluation.docx_第3页
第3页 / 共19页
Comparison of four models for thermal response test evaluation.docx_第4页
第4页 / 共19页
Comparison of four models for thermal response test evaluation.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

Comparison of four models for thermal response test evaluation.docx

《Comparison of four models for thermal response test evaluation.docx》由会员分享,可在线阅读,更多相关《Comparison of four models for thermal response test evaluation.docx(19页珍藏版)》请在冰豆网上搜索。

Comparison of four models for thermal response test evaluation.docx

Comparisonoffourmodelsforthermalresponsetestevaluation

Comparisonoffourmodelsforthermalresponsetestevaluation

SignhildEAGehlin,GoranHellstrom.ASHRAETransactions.Atlanta:

2003.Vol.109Part1.pg.131

 » Jumptoindexing(documentdetails)

FullText (5896 words)

CopyrightAmericanSocietyofHeating,RefrigerationandAirConditioningEngineers,Inc.2003

[Headnote]

ABSTRACT

Fourtwo-variableparameterestimationmodelsforevaluationofthermalresponsetestdataarecomparedwhenappliedonthesametemperatureresponsedata.Twomodelsarebasedonline-sourcetheory,thethirdmodelisacylinder-source-basedsolution,andthefourthisanumericalone-dimensionalfinitedifferencemodel.Thedatasetscontainmeasuredtemperatureresponse,heatload,andundisturbedgroundtemperaturefromthreethermalresponsetests,togetherwithphysicaldataofthetestedboreholeheatexchangers(BHE).ThemodelsestimategroundthermalconductivityandthermalresistanceoftheBHEandarecomparedregardingtestlengthanddataintervalused.Forthethreedefineddatasets,thelinesourceapproximationmodelshowstheclosestagreementwiththemeasuredtemperatureresponse.Thecylindersourceandnumericalmodelsshowsensitivitytotheinclusionofearlydata.Arecommendedminimumresponsetestdurationof50hoursisconcludedfromthemodelcomparison.

INTRODUCTION

Duringathermalresponsetest,adefinedthermalloadisappliedtoaboreholeheatexchangerandthetemperaturedevelopmentoftheinletandoutlettemperaturesaremeasuredovertime.Thistemperatureresponseallowsextrapolationofthethermalbehaviorinfuturetime.Onepossibleconceptualmodelfortheinterpretationistoassumethegroundtobeaconductivemediumandtodeterminetheapparentthermalconductivityandotherthermalparametersofthismedium.Thetestmaybeconductedusingatransportabledevicethatisbroughtonsitetotheborehole.

Sinceitsintroductionin1995-1996,thisin-situmethodhasspreadtomostcountrieswhereboreholesinthegroundareusedasaheatsource/sinkonalargerscale.Themethodservesprimarilytoassessthegroundthermalconductivityandperformanceofdifferentboreholeheatexchangerdesigns,whichareimportantforoptimaldesignandqualitycontrol.Themethodisdescribedinseveralpapers,e.g.,Gehlin(1998),Austin(1998),Austinetal.(2000),ShonderandBeck(2000),andKavanaughetal.(2000).TheprincipleofathermalresponsetestsetupisoutlinedinFigure1.

Theboreholetemperatureresponseisthetemperaturedevelopmentovertimeoftheheatcarrierfluidcirculatingthroughtheboreholeheatexchangerwhenaknownheatingorcoolingloadisimposed.Byevaluatingtheincreasingfluidtemperatureversustime,informationaboutthethermalpropertiesinandaroundtheboreholeisobtained.Alowthermalconductivityis,e.g.,indicatedbyamorerapidtemperatureresponse.Theresponsealsogivesinformationaboutthetemperaturedifferencebetweentheheatcarrierfluidandthesurroundinggroundcausedbytheheattransfer,i.e.,thethermalresistanceoftheboreholeheatexchanger.

Enlarge200%

Enlarge400%

Figure1Thermalresponsetestsetup.

Severalanalyticalandnumericalmethodsareusedfortheevaluationofresponsetesttemperaturedata.Thedifferentmodelsrequiresomewhatdifferentsetsofinputdata.Variousanalyticalmethodsforevaluationofboreholeresponsetestdataarediscussedbelow.

EvaluationMethods

Anumberofmethodshavebeenappliedovertheyearsforthesimulationofboreholeheatexchangerperformance.Bothanalyticalandnumericalmodelshavebeenusedandreportedinseveralpapers,reports,andbooks.Here,thefocusisonmodelsfortheevaluationofthermalresponsetestdatafordetermininggroundthermalconductivityandevaluationoftheefficiencyoftheboreholeheatexchanger.

Thethermalresponsetestmethodisbasedontheso-calledsingleprobemethodfordeterminingthethermalconductivityofsolidmaterialsinalaboratoryenvironment(StalhaneandPyk1931).Initialanalyseswerebasedontheline-sourceapproximation,whichdoesnotconsiderthethermalpropertiesoftheprobematerial.In1954,Blackwellpresentedananalyticalsolutionincludingboththeprobematerialandapossiblecontactresistanceattheprobesurface.Inprinciple,thismethodmakesitpossibletoshortenthemeasurementperiods,especiallyforlargeprobediameters.Attemptstodetermineboththermalconductivityanddiffusivitysimultaneouslybytakingthecontactresistanceintoaccountwerenotsuccessful(Blackwell1954;Becketal.1956).Thedeterminationofthethermaldiffusivitywasfoundtobeverysensitivetothecontactresistance.Sundberg(1988)developedadetailedFEMmodeloftheprobeinordertoshortenthemeasurementperiod.Hefoundthatboththermalconductivityanddiffusivitywereheavilyinfluencedduringtheinitialtimeperiodbysmallchangesintheprobeproperties.

Analyticalmodels,suchastheline-sourceandcylinder-sourcetheories,requireseveralsimplifyingassumptionsregardingthegeometryoftheboreholeandheatexchangerpipes.Forthepurposeofthethermalresponsetestevaluation,theheatflowtoorfromtheboreholemayberepresentedasaninfinitelylongheatsourceorsinkinthegroundwithnegligibleinfluenceofheatflowsinadirectionalongtheboreholeaxis.Inthegroundoutsidetheboreholeitiscommonpracticetoassumethatthethermalprocessdependsonlyontheradialdistancefromtheboreholeaxis.Theone-ortwo-dimensionalheatflowprocessfromthecirculatingfluidtotheboreholewallisassumedtoberepresentedbyathermalresistancethatcharacterizesthetemperaturelossbetweenheatcarrierfluidandboreholewall.Somemodelsalsoincludethethermalmassofthematerialsintheborehole.

IngersollandPlass(1948)appliedtheline-sourcemodeltothedesignofgroundloopheatexchangers.Mogensen(1983)proposedtouseaboreholesimilartotheprobetoestimatethegroundthermalconductivityfromanexperimentalfieldtest.ThismethodisnowcommonlyusedforthermalresponsetestevaluationinEurope.

ThecylindersourceapproachmodelsthegroundloopheatexchangerasacylinderbyintroducinganequivalentdiametertorepresentthetwopipesofasingleU-pipeheatexchangerasasinglecoaxialpipe.CarslawandJaeger(1959)developedanalyticalsolutionswithvaryingboundaryconditionsforregionsboundedbycylindergeometry.DeermanandKavanaugh(1991)andKavanaughandRafferty(1997)describetheuseofthecylinder-sourcemodelindesigninggroundloopheatexchangers.Theeffectivethermalconductivity(anddiffusivity)ofthegroundformationiscomputedbyreversingtheprocessusedtocalculatethelengthofthegroundloopheatexchanger.Basedonashort-termin-situtest,themeasuredeffectivethermalresistanceofthegroundofadailyheatpulseisfittedtoavaluecomputedfromadimensionlesscylinder-sourcefunctionbyvaryingthethermalconductivityanddiffusivityoftheground.

Numericalmodelscanbedesignedtohandledetailedrepresentationsoftheboreholegeometryandthermalpropertiesofthefluid,pipe,boreholefilling,andground,aswellasvaryingheattransferrates.Themoreextensivesetofrequiredinputdataoftenmakethesemodelsmoredifficultandtime-consumingtousethantheanalyticalmethods,whichsometimesmaybeimplementedassimplespreadsheetapplications.

Berberichetal.(1994)describearesponsetesttypeofmeasurementingroundwater-filledductsinwater-saturatedclaystonewheretemperaturesensorswereplacedalongtheboreholewall.Themeasureddatawereanalyzedwithbothananalyticalline-sourcemodelandanumericaltwo-dimensionalfinitedifferencemodelusingparameterestimationwithgroundthermalconductivityandvolumetricheatcapacityasvariables.Thenumericalmodelcalculatestheheatflowsinboththeverticalandtheradialdirectionsforaboreholeoffinitelength.Theresultsfromthenumericalanalysesresultedin5%lowerthermalconductivityvaluesthantheanalyticalresults.Berberichetal.(1994)attributethisdifferencetoendeffectsofthefinite-lengthborehole,i.e.,increasedheattransfernearthetopandbottomoftheborehole.

ShonderandBeck(1999)developedaparameter-estimation-basedmethod,whichisusedincombinationwithaone-dimensionalnumericalmodel.Thismodelissimilartoacylinder-sourcerepresentationinthatitrepresentsthetwopipesoftheU-tubeasasinglecylinder.However,itaddstwomorefeatures-athinfilmthataddsaresistancewithoutheatcapacityandalayerofgrout,whichmayhaveathermalconductivityandheatcapacitydifferentfromthesurroundingsoil.Thismodelaccommodatestime-varyingheatinput.

Atransienttwo-dimensionalnumericalfinitevolumemodelinpolarcoordinatesforresponsetestevaluationisreportedinAustin(1998)andAustinetal.(2000).ThegeometryofthecircularU-tubepipesisapproximatedby"pie-sectors,"overwhichaconstantfluxisassumed.TheconvectionresistanceduetotheheattransferfluidflowinsidetheU-tubesisaccountedforbyusingfluidpropertiesthroughanadjustmentontheconductivityofthepipewallmaterial.AthoroughdescriptionofthenumericalmodelisfoundinYavuzturketal.(1999).Themodelhassincebeenimprovedbyintroducingaboundary-fittedgridsystemthatismoreflexibleandbetterrepresentstheU-tubepipegeometry(Spitleretal.2000).Themodeliscomparedwiththeline-sourceandcylinder-sourcemodelsinAustin(1998).

Enlarge200%

Enlarge400%

TABLE1

SummaryofRequiredInputtotheFourAnalysisModels

Smith(1999)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔 > 畜牧兽医

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1