四旋翼无人飞行器设计图文.docx

上传人:b****5 文档编号:6300582 上传时间:2023-01-05 格式:DOCX 页数:54 大小:2.35MB
下载 相关 举报
四旋翼无人飞行器设计图文.docx_第1页
第1页 / 共54页
四旋翼无人飞行器设计图文.docx_第2页
第2页 / 共54页
四旋翼无人飞行器设计图文.docx_第3页
第3页 / 共54页
四旋翼无人飞行器设计图文.docx_第4页
第4页 / 共54页
四旋翼无人飞行器设计图文.docx_第5页
第5页 / 共54页
点击查看更多>>
下载资源
资源描述

四旋翼无人飞行器设计图文.docx

《四旋翼无人飞行器设计图文.docx》由会员分享,可在线阅读,更多相关《四旋翼无人飞行器设计图文.docx(54页珍藏版)》请在冰豆网上搜索。

四旋翼无人飞行器设计图文.docx

四旋翼无人飞行器设计图文

分类号密级

UDC

学位论文

四旋翼飞行器建模与控制方法的研究

作者姓名:

何嘉继

指导教师:

杨光红教授

东北大学信息科学与工程学院

申请学位级别:

硕士

学科类别:

工学学科专业名称:

导航、制导与控制

论文提交日期:

2012年6月论文答辩日期:

2012年6月

学位授予日期:

2012年7月答辩委员会主席:

井元伟教授

阅人:

董久祥、常晓恒

东北大学

2012年6月

AThesisinNavigationGuidanceandControl

ModelingtheQuad-rotorandControl

Strategyresearch

ByHeJiaji

Supervisor:

ProfessorYangGuanghong

NortheasternUniversity

June2012

独创性声明

本人声明,所呈交的学位论文是在导师的指导下完成的。

论文中取得的研究成果除加以标注和致谢的地方外,不包含其他人己经发表或撰写过的研究成果,也不包括本人为获得其他学位而使用过的材料。

与我一同工作的同志对本研究所做的任何贡献均己在论文中作了明确的说明并表示谢意。

学位论文作者签名:

日期:

学位论文版权使用授权书

本学位论文作者和指导教师完全了解东北大学有关保留、使用学位论文的规定:

即学校有权保留并向国家有关部门或机构送交论文的复印件和磁盘,允许论文被查阅和借阅。

本人同意东北大学可以将学位论文的全部或部分内容编入有关数据库进行检索、交流。

作者和导师同意网上交流的时间为作者获得学位后:

半年□一年□一年半□两年□

学位论文作者签名:

导师签名:

签字日期:

签字日期:

四旋翼飞行器建模与控制方法的研究

摘要

四旋翼飞行器是一种电动的、能够垂直起降的、多旋翼式遥控自主飞行器。

它在总

体布局形式上属于非共轴式碟形飞行器,与常规旋翼式飞行器相比,其特殊的机械结构

与飞行动力学特性,在科技研究应用中有着重要意义。

本文以四旋翼飞行器为研究对象,

主要在四旋翼飞行器的六自由度动力学建模,以及在此基础上实现系统欠驱动控制的非

线性控制方法的研究等两个方面展开了研究。

研究的主要内容包括以下几个方面:

首先,根据六自由度的四旋翼飞行器的机体组成、运动产生机理,建立了描述四旋

翼飞行器飞行运动的机体坐标系和地面坐标系,并给出了两个坐标系之间的坐标转换矩

阵;再根据四旋翼飞行器的动力系统模型以及空气动力学知识,由牛顿欧拉定理推导出

了六自由度四旋翼飞行器的全状态非线性动力学方程。

最后,根据系统数学模型,并在

忽略弹性形变、空气扰动等外部干扰的情况下对系统模型进行了适当的简化。

其次,根据前面简化了模型,分析了四旋翼飞行器的欠驱动特性,据此提出了一种

双控制回路,六子系统的欠驱动控制策略,再根据选择的系统状态变量与控制输入,得

到了满足严格反馈形式的系统方程,在此基础上,设计了基于分步Backstepping方法的

四旋翼飞行器飞行控制器。

该控制器能够无稳态误差地实现各姿态镇定、定点到达、位

置与偏航角轨迹跟踪。

最后通过仿真实验对控制器的有效性进行了检验。

再次,为了解决系统模型误差对系统响应的影响问题以及四旋翼飞行器对外扰动敏

感的问题,引入系统模型误差估计器和误差积分项,将Backstepping方法应用于构建系

统自适应控制器,实现了四旋翼飞行器的自适应控制。

该自适应控制器在传感器干扰,

外界扰动等情况下,有更优异的性能。

最后通过仿真实验对控制器的效果进行了检验。

最后是对全文进行总结和对下一步工作的展望。

关键词:

四旋翼飞行器,反步法,自适应控制,姿态控制,动力学建模

ModelingtheQuad-rotorandControlStrategy

ResearchAbstractThequad-rotoraircraftisanelectricmulti-rotorautonomousvehiclewhichisVTOLandcanberemotecontrolled.Itisanon-coaxialdiscaircraftintheoveralllayoutofforms.Comparedwithconventionalrotarywingaircraft,itsspecialmechanicalstructureandflightdynamicscharacteristicsareofgreatsignificanceinthescientificandtechnologicalresearchandapplication.Takingthequad-rotoraircraftastheobject,thisthesismainlydiscussesthefollowingtwoquestions:

dynamicmodelingofthesixdegreesoffreedomofthequad-rotoraircraft,andbasedonthismodeling,achievingthenonlinearcontrolmethodofunder-actuatedsystems.Themaincontentsofthisthesisincludethefollowingaspects:

Firstofall,accordingtothebodycompositionandthemovementmechanismofthequad-rotoraircraftofsixdegreesoffreedom,thisthesisestablishestheairframeandthegroundcoordinatesystemdescribingtheflightmovementsofthequad-rotoraircraft,andgivesthecoordinatetransformationmatrixbetweenthetwocoordinatesystems.Basedonthedynamicalsystemmodelofthequad-rotoraircraftandtheaerodynamicknowledge,thisthesisthendeducesfullstatenonlineardynamicequationsofthesixdegreesoffreedomofthequad-rotoraircraftbytheNewton-Eulertheorem.Finally,onthebasisofsystemmathematicalmodel,thisthesisappropriatelysimplifiesthesystemmodel,ignoringthe

elasticdeformation,airturbulenceandotherexternalinterferences.Secondly,basedontheprevioussimplifiedmodel,thisthesisanalyzestheunder-actuatedcharacteristicsofthequad-rotoraircraft,wherebythisthesisproposesadualcontrolloopandsomeunder-actuatedcontrolstrategiesofthesixsubsystems.Accordingtothechosensystemstatevariablesandcontrolinputs,thisthesisthenobtainsthesystemequationswhichmeetthestrictfeedbackform,andonthebasisofwhich,designsaBackstepping-basedflightcontrollerofthequad-rotoraircraft.Thiscontrollerisabletotrackeveryposturecalm,designatedreach,positionandyawangletrajectorywithnosteady-stateerror.Finally,thealgorithmvalidityistestedthroughsimulationexperiments.Thirdly,inordertoresolvetheproblemsoftheimpactofthesystemmodelerrorandthe

sensitivenessofthequad-rotoraircrafttoexternaldisturbances,thesystemmodelerror

estimatorandtheerrorintegralareintroduced.Atthesametime,Backsteppingapproachisappliedtoestablishthesystemadaptivecontrollertofinallyachievetheadaptivecontrolofthequad-rotoraircraft.Thisadaptivecontrollershowsmoreexcellentperformanceinthecaseofsensorinterference,externaldisturbanceandsoon.Finally,theeffectofthecontrolleristestedthroughsimulationexperiments.

Atlast,thethesispresentsthesummaryofthisstudyandtheoutlookofthefuturework.

Keywords:

quad-rotoraircraft;backsteppingmethod;adaptivecontrol;attitudecontrol;

dynamicmodeling

独创性声明························································································································I

摘要························································································································································II

Abstract·····················································································································································III

第1章绪论·········································································································································1

1.1问题背景···························································································································1

1.2四旋翼飞行器发展历史与国内外研究现状····································································3

 

1.3微小型四旋翼飞行器关键技术与理论成果····································································9

 

1.4论文主要研究内容·········································································································11

第2章四旋翼飞行器建模·········································································································13

2.1引言·································································································································13

2.2四旋翼飞行器的结构·····································································································13

2.3四旋翼飞行器的飞行控制原理·····················································································13

2.4坐标系与坐标变换·········································································································16

 

2.5四旋翼飞行器动力学分析与建模··················································································19

 

2.6本章小结·························································································································25

第3章基于Backstepping方法的四旋翼飞行器控制··············································26

3.1引言·································································································································26

3.2Backstepping设计方法···································································································26

 

3.3四旋翼飞行器的Backstepping控制器设计··································································37

 

3.4仿真结果与分析·············································································································48

 

3.5结论·································································································································55

第4章四旋翼飞行器的自适应Backstepping控制····················································56

4.1引言·································································································································56

4.2自适应Backstepping方法······························································································56

 

4.3四旋翼飞行器的自适应Backstepping控制··································································60

4.4仿真结果与分析·············································································································63

 

4.5结论·································································································································69

第5章总结与展望·························································································································70

5.1论文工作总结·················································································································70

5.2进一步工作展望·············································································································71

参考文献·················································································································································72

致谢·························································································································································76

第1章绪论

1.1问题背景

近年来,随着卫星技术及无人飞行器技术的快速发展,微机电系统技术业已

在国防、军工、民用产品等各方面被设计者广泛应用,飞行器的小型化和信息化

的进程不断加速,这都使得具有广泛用途的无人驾驶飞行器(UnmannedAerial

Vehicles,UAV)成为许多国家的研究热点。

无人驾驶飞行器从无到有,围绕着它的研究就受到有关各个方面的广泛重

视。

世界主要国家在发展长航时无人飞行器和作战飞机的同时,也着力发展小型

和微型无人机,不断研制无人飞行器小型化,甚至微型化的技术。

世界上各大军

事强国,尤其是美国,对微小型无人飞行器的需求与日俱增,随着需求数量的增

加,势必期望其在实际战争进程中发挥更大的作用。

这些年来,随着嵌入式处理器、微传感器技术和现代控制理论的蓬勃发展,

微机电系统技术更在军事武器、民用产品等各方面大展拳脚,世界各国都开始竞

相开发研制遥控式、半自主式或自主式的单兵可携带的微小型无人飞行器,并在

未来的一段时间内逐步装备部队。

微型无人飞行器可以在人为操作下完成超低空

侦察、电子干扰、敌情监视等各种复杂的军事任务。

今后的发展,无人飞行器可

以走功能单元化的道路,即执行某种任务就搭载实践该任务的传感器。

例如,当

执行近距离对目标实施侦察监视的任务时,可以在微小型无人飞行器机身上搭载

全天候图像传感器,当执行电磁干扰的任务时,可以在飞行器机身上搭载电磁干

扰设备。

在现代信息化条件下的战争中,基层指挥人员利用便携式卫星传输装置,实

战中可以接近实时地收到各侦查设备所侦察到的战区级敌情图像信息。

但是,不

论是卫星、间谍飞机还是侦察机,都很难为前线指挥员提供小范围内的具体敌情,

微小型无人飞行器的出现正迎合了这种需求。

无人飞行器可以分为固定翼无人飞行器和旋翼无人飞行器,20世纪80年代

初以来,固定翼无人飞行器已在多次局部战争中充分展现其优越作战性能,它为

美国、以色列等国军队取得战争的胜利立下了汗马功劳。

固定翼无人飞行器能够

完成高品质、近实时、全天候的侦察、监视、目标捕获、拦截和战损评估等任务,

甚至可以直接攻击重要目标。

而与固定翼无人飞行器相比,旋翼无人飞行器具有更多的优点。

旋翼无人飞

行器由于能够垂直起降(VerticalTakeoffandLanding,VTOL,自由悬停,所以可

适应各种速度及各种飞行剖面航路的飞行状况,并且起飞着陆场地面积要求小。

旋翼无人飞行器的垂直起降优势决定了其广泛的应用范围:

在军用方面,它既能

执行各种非杀伤性任务,又能执行各种软硬杀伤性任务,包括:

侦察、监视、目

标截获、诱饵、攻击、通信中继等;在民用方面,它在大气监测、交通监控、资

源勘探、电力线路检测、森林防火等方面具有广泛的应用前景。

20世纪50年代以来,出现了许多新概念的垂直起降无人飞行器,其中最引

人注目的是一系列碟形飞行器,这其中最重要的就是四旋翼飞行器。

下面针对各

种垂直起降飞行器的性能,绘制表1.1[1]。

表1.1垂直起降飞行器性能

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 育儿知识

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1